SUN YAT－SEN UNIVERSITY

Progress in the simulation of the Energy resolution function of CSNS Back－n facility

Shengda Tang（唐生达）$)^{1,2,3}$ ，Yonghao Chen（陈永浩）${ }^{1,2}$ ，Zhen Yang $(\text { 杨振 })^{3}$
1．Spallation Neutron Source Science Center，Dongguan 523803，China
2．Institute of High Energy Physics，Chinese Academy of Sciences（CAS），Beijing 100049，China
3．Sino－French Institute of Nuclear Engineering and Technology，Sun Yat－sen University，Zhuhai 519082，China

ISINN－30 2024．4．15 Egypt，Sharm el Sheikh

Outline

CSNS and Back-n facility

Energy resolution function

Geant4 Simulation

Results and outlook

Poster presentation

CSNS and Back-n facility

The layout of the CSNS and Back-n facility

Collimator configuration and reference values of neutron flux

Neutron shutter $(\mathbf{m m})$	Collimator1 $(\mathbf{m m})$	Collimator2 $(\mathbf{m m})$	ES\#1 beam spot $(\mathbf{m m})$	ES\#2 beam spot $(\mathbf{m m})$	ES\#1 Neutron fluxes $(\mathbf{n} / \mathbf{c m} 2 / \mathbf{s})$	ES\#2 Neutron fluxes $\left.\mathbf{n} / \mathbf{c m}^{2} / \mathbf{s}\right)$
$\emptyset 12$	$\emptyset 15$	$\emptyset 40$	$\emptyset(15 \times 15)$	$\emptyset(40 \times 40)$	1.30 E 5	4.60 E 4
$\emptyset 12$	$\emptyset 15$	$\emptyset 40$	$\emptyset(18 \times 18)$	$\emptyset(30 \times 28)$	1.67 E 6	6.41 E 5
$\emptyset 50$	$\emptyset 50$	$\emptyset 58$	$\emptyset(54 \times 54)$	$\emptyset(62 \times 62)$	1.60 E 7	6.72 E 6
78×62	76×76	90×90	84×82	96×94	1.80 E 7	8.57 E 6
$\emptyset 50$	$\emptyset 15$	$\emptyset 40$	$\emptyset(14 \times 14)$	$\emptyset(42 \times 26)$	1.04 E 7	2.42 E 6

$>$ China Spallation Neutron Source(CSNS) is the first pulsed spallation neutron source in China, its provides an excellent research platform for fundamental research and the development of high-tech industries.
$>$ The Back-n beamline can offer neutrons with high flux, wide energy range, and great time resolution, its well-suited for nuclear data measurement.

Energy resolution Function

- The Energy Resolution Function (ERF) of a neutron spectrometer is crucial for nuclear data analysis, particularly in the resonance energy region.
- For ERF, the most crucial component that needs to be investigated is the neutron production and transport in the spallation target, which could only be inferred from detailed Monte-Carlo simulations.

$$
\begin{gathered}
\frac{\Delta E}{E}=\gamma(\gamma+1) \sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{\Delta T}{T}\right)^{2}} \\
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}} \\
v T_{m o d} \approx \Delta L
\end{gathered}
$$

The Schematic drawing of neutron production, transport, and detection

The moderation distance $(\Delta \boldsymbol{L})$ is defined as the product of the neutron velocity at the emission surface and moderation time in spallation target.

Geant4 simulation

The profile layout of the spallation target station

Components of the simulation model

Module	Parameters
Target	Tungsten (11 pieces, Total length:650 mm $)$ Cross section $170 \mathrm{~mm}(\mathrm{H}) \times 70 \mathrm{~mm}(\mathrm{~V})$
Tantalum	Thickness: 0.3 mm
Target colling	Water, gap: 1.2 mm other size: 20 mm
Reflector	Be: $\Phi 700 \mathrm{~mm} \times 800 \mathrm{~mm}$
Shielding	Fe:1000 $\mathrm{mm} \times 1000 \times 1000 \mathrm{~mm}$
Target vessel	SS316 Forward: $2.5 \mathrm{~mm} \quad$ Backward: 12 mm Up and Down: 7.5 mm Left and Right: 12 mm
Moderator	CHM: $\Phi 150 \mathrm{~mm} \times 100 \mathrm{~mm}$

\checkmark The Geant4 Version: 10.07, the physics list: QGSP_INCLXX_HP.
\checkmark The protons number in simulation: 100 million.
\checkmark Scoring volume: The Target vessel (SS316 forward).
\checkmark The neutron kinetic energy, velocity, time, position, and direction messages are collected.

Result and Outlook

 Spatial distribution of neutrons at the
 neutron emission surface

$>$ The neutron emission distribution at the target surface is obtained.
$>$ The probability distribution of ΔL as a function with neutron energy is obtained. The low-energy region is more significantly influenced by ΔL.

Result and Outlook

- Only neutrons can reach the experiment station should be considered.
- The "splitter" method, one of the biasing techniques is used. Optimizing the splitter configuration can enhance the statistics of the particles.

The distribution of neutrons at the shutter position (Before using "splitter method")

The distribution of neutrons at the shutter position (After using "splitter method")

- Even with the splitter method, only a few neutrons can arrive the neutron shutter.
- The "re-sample" method, based on the present neutron distribution may be a practical and efficient choice.

Poster exhibition

Thank you！

