

Cyanobacteria Arthospira platensis as an effective tool for gadolinium removal from wastewater

Nikita Yushin, Inga Zinicovscaia, Liliana Cepoi, Tatiana Chiriac, Ludmila Rudi

Applications of gadolinium

Gadolinium-based MRI contrast agent Gadolinium garnet

Magnetic refrigeration

Luminophores

Metal alloys

Gadolinium oxide control rods

Relevance of the work

Traditional idustrial wastewater treatment methods

- Mechanical
- Settling, filtration
- Chemical methods
- Complexation, precipitation
- Physical and chemical methods
- Coagulation, extraction, sorption, distillation
- Aeration tanks, filtration fields, biofilters, biological ponds

Limitations

- High cost
- Difficulty in operation
- Exposure to toxic substances

Advantages of biological methods

- Low cost
- High efficiency
- Environmental friendliness

The scheme of the experiment

ISINN-30, Sharm El-Sheikh, Egypt, April 15, 2024

Biosorption

Effect of temperature on gadolinium biosorption

Effect of time on A. platensis biosorption capacity

Biosorption

Thermodynamics parameters for gadolinium biosorption

Temperature, K	ΔG°, kJ/mol	ΔH°, kJ/mol	ΔS°, J/mol⋅K
293	-14.0	-24.9	-37.1
303	-13.7		
313	-13.3		
323	-12.9		

Effect of temperature on gadolinium biosorption

Biosorption

Kinetics of gadolinium biosorption

Model	Pseudo-first-order		Pseudo-second-order			
Parameters	q _e	k ₁	R ²	q _e	k ₂	R ²
Gd	1,24	19,8	0,98	1,24	-0,6	0,97

Isotherms of gadolinium biosorption

Model	Langmuir		Freundlich			
Parameters	q _m	b	R ²	K⁼	n	R ²
Gd	101	0,0081	0,08	0,09	0,84	0,98

Bioaccumulation

Bioaccumulation

Bioaccumulation

The effect of gadolinium on the amount of lipids and MDA (b - p < 0.005, c - p < 0.05)

The effect of gadolinium on the antioxidant activity (a - p < 0,0005, b - p < 0,005, c - p < 0,05)

Conclusion

- A maximum sorption can be achieved at a pH of 3, temperature of 20°C, and adsorption time of 3 min
- The kinetics of the biosorption was better described by pseudo-first-order kinetic model, suggesting the physical nature of biosorption
- Equilibrium data were better presented by the Freundlich model, suggesting biosorption on the heterogeneous surface
- From a thermodynamic point of view, the process of gadolinium biosorption was spontaneous and exothermic in nature
- In the bioaccumulation experiments, gadolinium ions were almost completely accumulated from the cultivation medium and stimulated biomass growth
- Cyanobacteria Arthrospira platensis can be applied for gadolinium removal from wastewater through biosorption and/or bioaccumulation processes.
- The accumulated information, along with the data obtained for other rare earth elements, can be used for the development of the technology for the efficient treatment of effluents containing several rare earth elements

Thank you for attention!

