

The PFNS Measurement in CIAE

Hanxiong Huang China Institute of Atomic Energy (CIAE), Beijing, China

April 15, 2024

Contents

- **1. Overview of the PFNS**
- 2. The status of PFNS
- **3. The technique of PFNS measurement**
- 4. The measurement progress in CIAE
- 5. Summary & future plan

中国原子能科学研究院 1. Overview of the PFNS

- a) PFNS-Prompt Fission Neutron Spectra, Before the β decay, within 10⁻¹⁴ s, >98%.
- b) It is very useful for nuclear device design, radiation shielding calculation and nuclear reaction research.
- c) Data in both ends of the spectra is divergent from each otherd)Why the divarication exist?

The PFNS of different nuclides

中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY 2. The status of PFNS

List of the parameters for different PFNS facilities

Laboratory/ First author	No. of Detector s	No. of cell in PPAC	Distance of NTOF	Sample	Mass of the sample	Year
CIAE/Li Anli	2	103	2.5	238U	\sim 5g	1996
France/A. Sardet	1	10	N/A	²³⁵ U, ²³⁸ U, ²³⁷ Np	N/A	2013
Japan/Miura	1	24 for ²³³ U	2	²³³ U, ²³⁸ U, ²³² Th	2.28g for ²³³ U, φ20mm*50mm for the others	2002
Los Alamos/CHI-NU	60	10	1	²³⁵ U, ²³⁹ Pu,	100mg	~2019
India/Desai	2	1	0.7	²³⁸ U	2.1mg/cm^2	2015
FINDA/Hanxiong	48	10	1	²³⁵ U	100mg	2023

The experimental data of PFNS induced by white neutron source is more valuable.

② 中国原子能科学研究院 CHINA INSTITUTE OF ATOMIC ENERGY 3. The technique of PFNS measurement

① The PFNS of 238U induced by 2.8 MeV neutron

② The efficiency calibration for neutron detectors with a ²⁵²Cf source

The layout of efficiency calibration

The efficiency for single detector

③ The PFNS measurement at CSNS back-n

Back ground simulation with Geant4

Where the neutrons	Counts	Percentage	
came from	C ounts	I er continge	
Air	166477	5.4804%	
Other LS det.	195285	6.4288%	
Detector support	51771	1.7043%	
Fission	120786	3.9763%	
Fission plate	1461400	<mark>48.1103%</mark>	
<mark>liner(100um SSL)</mark>	<mark>1461428</mark>		
Fragment stop	000041	27.2000	
plate(10um)	828341	27.2690%	
PPAC散射	31691	1.0433%	
Left wall	39379	1.2964%	
Right wall	63140	2.0786%	
Back wall	12180	0.4010%	
Front wall	12283	0.4044%	
Roof	5741	0.1890%	
floor	44057	1.4504%	
Chamber	5105	0.1681%	
Total	3037664	100.0000%	

Some parameters for PFNS experiment at back-n

Flssion Neutron spectrum Detector Array-FINDA

Parameter	content		
Detector number	48		
Detector type	Liquid scintillator (LS)		
Sample	²³⁵ U		
Sample mass	~40 mg		
Time resolution	1 ns		
between PPAC and LS	1 115		
DAQ time	~300 hours		
Distance for source neutron	55 m		
Distance for fission neutron	1 m		
LS type	EJ301		

Four XIA 16-channel Pixie16 500M SPS 12bits modules

DAQ for PFNS measurement: amplitude, QDC, time stamp

Some Preliminary results I

Some Preliminary results II

5. Summary & future plan

 PFNS research with white neutron source has been started in China, there are still a lot of work to be done.

- Future plan
 - 1) Improve the data quality
 - **(2)** Measure the PFNS of some other elements
 - **③** Try to measure the angular distribution of fission neutrons
 - **4** Seeking some cooperations with FINDA

Advices, questions and comments are welcome. hhanxiong@163.com, (86)13520061343