

Measurement of the ^{235, 238}U(n, f) cross-section relative to n-p scattering from 10 to 70 MeV at CSNS Back-n

Yonghao CHEN (陈永浩)

Institute of High Energy Physics(IHEP), Chinese Academy of Sciences (CAS) Spallation Neutron Source Science Center

30th International Seminar on Interaction of Neutrons with Nuclei, Sharm El-Sheikh, Egypt, April 14-18, 2024

Outline

1. Motivations

- 2. Experimental setup
- 3. Analysis and preliminary results
- 4. Summary

Motivations

²³⁵U and ²³⁸U are very important isotopes in the nuclear energy system

- ²³⁵U is the fissile material in the current thermal reactor
- ²³⁸U is the fertile material in the future U-Pu cycle

^{235, 238}U(n, f) cross-sections are evaluated as standard up to 200 MeV

• References for cross section measurement, neutron flux determination, etc

However, the experimental data in high energy region (above 20 MeV) are scarce

• There are only a few sets of measurements with significant discrepancies (EXFOR)

New dataset in high energy region at state-of-the-art facility is essential and indispensable!

1. Motivations

2. Experimental setup

- 3. Analysis and preliminary results
- 4. Summary

(1) Back-n facility at CSNS

China Spallation Neutron Source (CSNS)

Back-streaming neutron (Back-n) beamline

(1) Back-n facility at CSNS

CSNS tungsten target

(2) Detector setup

- Setup at Back-n ES#1 with small collimators (beam spot: ~φ18 mm)
- A fission chamber (FIXM) is used for measuring the fissions of U5 and U8
- Proton recoil telescope (PRT) is used for monitoring the neutron flux by measuring the n-p scattering
 ΔE(Si)-E(CsI) (Proton recoil telescope)

FIXM

(3) Sample details

U5

Sample	Mass (mg)	Size (mm)
U5-1	5.173	φ50
U5-5	6.319	φ50
U8-1	4.991	φ50
U8-2	4.987	φ50

Sample	Thickness (mg/cm ²)	Size (mm)
LDPE	9.989	77×77
Graphite	8.653	77×77

The masses of all the samples are accurately known, however, we do not know their homogeneities which are key parameters in this experiment configuration.

- 1. Motivations
- 2. Experimental setup
- 3. Analysis and preliminary results
- 4. Summary

(1) Analysis of the FIXM

• Time-of-flight (TOF) method for determining neutron energy

$$v = \frac{L}{TOF} = \frac{L}{T - T_0}$$

(1) Analysis of the FIXM

Measured in double-bunch mode: two identical proton bunches with well-defined interval (410 ns) in each proton pulse.

(1) Analysis of the FIXM

 An iterative algorithm based on Bayes' theorem for unfolding the TOF spectrum is developed (*H. Yi et al, JINST 14 (2019): 02011*)

$$C_i^{(k+1)} = E_i \frac{C_i^{(k)}}{C_{i-\Delta}^{(k)} + C_i^{(k)}} + E_{i+\Delta} \frac{C_i^{(k)}}{C_i^{(k)} + C_{i+\Delta}^{(k)}}$$

(1) Analysis of the FIXM

- Detection efficiency of the fission events: ~95%
- The efficiency of a fission chamber is not varying with the neutron energy

(2) Analysis of the PRT

TOF technique for determining neutron energy

(2) Analysis of the PRT

(2) Analysis of the PRT

• A graphite sample with equivalent thickness as LDPE was measured to subtract the contribution from the carbon nuclei

(2) Analysis of the PRT

- Geant4 Simulation for effective efficiency
- Physics list: FTFP_BERT_HP
- Neutron data: ENDF/B-VIII.0 (<20 MeV) and G4 model (> 20 MeV)

Effective efficiency: ratio of elastic scattering protons detected by PRT over all the n-p scattering events occurred in LDPE sample

(3) Preliminary results

The n-p elastic scattering cross section data used as references

Reaction	Library	Energy range
H(n, n)H	IAEA standards (2017)	En < 20 MeV
	JEFF-3.1.2	En > 20 MeV

- Sample size is much larger than the beam spot (1)
- Samples' homogeneity and beam profile in this case is not well controlled yet (2)
- The measurements are normalized to the standards at 14.5 MeV (D-T source) (3)

Cross section at 14.5 MeV				
Reaction	Library	Cross section (barns)		
²³⁵ U(n, f)	IAEA standards (2017)	2.09		
²³⁸ U(n, f)	IAEA standards (2017)	1.19		

(3) Preliminary results

The measured shapes of ²³⁵U(n, f) and ²³⁸U(n, f) XS generally follow the IAEA standards but discrepancies exist at given energy (~20 MeV, ~30 MeV)

- 1. Motivations
- 2. Experimental setup
- 3. Analysis and preliminary results
- 4. Summary

- 1. ^{235, 238}U (n, f) cross sections from 10 to 70 MeV are measured relative to n-p scattering at CSNS Back-n (A shape measurement normalized to standard).
- 2. The preliminary results generally follow the IAEA standards (2017) but discrepancies exist at given energy.
- 3. More detailed analysis will be performed to confirm the discrepancy between our measurement and the standard, which is very important for the next evaluation
- 4. The measurement energy range will be extended (10-70 MeV -> 7-100 MeV) by upgrading the telescope and increasing the statistics
- 5. Absolute measurement may be performed in the future with good control on the relation between sample and beam

Thanks, questions?

