^{242m}Am isomer yield in ²⁴³Am(n,2n) reaction

Vladimir Maslov 220025, Minsk, Byelorussia

Collaboration

- ADVANCED EVALUATION OF 237Np and 243Am NEUTRON DATA'
- COLLABORATION
- V.M. Maslov¹⁾, V.P.Pronyaev²⁾, N.A. Tetereva¹⁾,
- T. Granier³⁾, F.-J. Hambsch⁴⁾
- •

•

- 1) Minsk-Sosny, Byelorussia
- 2) Institute of Physics and Power Engineering, 249033, Obninsk, Russia
- 3) CEA, Centre DAM-Ile de France, 91927, Arpajon, Cedex, France
- 4) EU-JRC Institute for Reference Materials and Measurements, Geel, Belgium

SCOPE

Reaction chain 243 Am(n,2n) 242g Am($\beta^-(\epsilon)$) 242 Cm(242 Pu) defines α - & n-activity of n spent fuel.

- •The half-life of ^{242g}Am is 16 h
- •The half-life of ^{242m}Am is 141 y

•^{242m}Am $\sigma(n,f) \gtrsim$ 6000 barn may influence the core neutronics.

²⁴³Am(n,2n)^{242g}Am, En=15 MeV, measured by TL Norris, AJ Gancartz et al., 1982

- 243 Am(n,2n) populates T_{1/2} =16h 242g Am, J^{π}=1⁻ & <u>T_{1/2} =1</u>41y 242m Am with J^{π}=5⁻
- Forbidden β^- decay of ^{242m}Am
- ²⁴³Am(n,2n)^{242g}Am(β⁻(ε)²⁴²Cm(²⁴²Pu)
- Forbidden β^- decay of ^{242m}Am
- ${}^{242m}Am(n,\gamma){}^{243}Am(n,\gamma){}^{244m}Am(\beta^{-}(\epsilon)){}^{244}Cm({}^{244}Pu)$
- ${}^{242m}Am(n,\gamma){}^{243}Am(n,\gamma){}^{244g}Am(\beta){}^{-}){}^{244}Cm$

LNP, JINR, Dubna, Russia and Sharm El-Sheikh, Egypt

The γ -decay of the excited nucleus is described by the kinetic equation n

$$\frac{\partial \omega_{k}(U, J^{\pi}, t)}{\partial t} = \sum_{J'\pi'} \int_{0}^{U_{g}} \omega_{k-1}(U', J^{\pi'}, t) \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi})}{\Gamma(U', J^{\pi'})} dt - \omega_{k}(U, J^{\pi}, t) \frac{\Gamma_{\gamma}(U, J^{\pi})}{\Gamma(U, J^{\pi})}$$

$\omega_k(U, J^{\pi})$ is the population of $(J\pi)$ at U after emission of k γ – quanta

Integrating over t , in the long run, one gets W(U,J π) after emission of k γ -quanta

$$\omega_{k}(U, J^{\pi}, \infty) - \omega_{k}(U, J^{\pi}, 0) = \sum_{J'\pi'} \int_{U}^{U_{g}} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}$$

$$\frac{\Gamma_{\gamma}(U,J^{\pi})}{\Gamma(U,J^{\pi})}\int_{0}^{\infty}\omega_{k}(U,J^{\pi},t)dt$$

$$\frac{\partial \omega_{k}(U, J^{\pi}, t)}{\partial t} = \sum_{J'\pi'} \int_{0}^{U_{g}} \omega_{k-1}(U', J^{\pi'}, t) \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi})}{\Gamma(U', J^{\pi'})} dt - \omega_{k}(U, J^{\pi}, t) \frac{\Gamma_{\gamma}(U, J^{\pi})}{\Gamma(U, J^{\pi})}$$

$$\omega_k(U, J^{\pi}, t=0) = \delta_{ko}\omega_0(U, J^{\pi})$$

$$\omega_{k}(U, J^{\pi}, \infty) - \omega_{k}(U, J^{\pi}, 0) = \sum_{J'\pi'} \int_{U}^{U_{g}} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{0}^{\infty} \omega_{k-1}(U', J^{\pi'}, t) dt dU' - \frac{1}{2} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}{\Gamma(U', J^{\pi'})}} \int_{U}^{U} \frac{\Gamma_{\gamma}(U', J^{\pi'})}$$

$$\frac{\Gamma_{\gamma}(U,J^{\pi})}{\Gamma(U,J^{\pi})}\int_{0}^{\infty}\omega_{k}(U,J^{\pi},t)dt$$

$$W_k(U, J^{\pi}) = \frac{\Gamma_{\gamma}(U, J^{\pi})}{\Gamma(U, J^{\pi})} \int_0^\infty \omega_k(U, J^{\pi}, t) dt$$

 $W_k(U, J^{\pi})$ population of state after emission of k gamma-quanta

$$W_{k}(U,J^{\pi}) = \sum_{J'\pi'} \int_{U}^{U_{g}} \frac{\Gamma_{\gamma}(U',J^{\pi'},U,J^{\pi})}{\Gamma(U',J^{\pi'})} W_{k-1}(U',J^{\pi'}) dU' + \omega_{k}(U,J^{\pi},0)$$

$$W(U,J^{\pi}) = \sum_{k} W_{k}(U,J^{\pi})$$

٦

$$W(U, J^{\pi}) = \sum_{J'\pi'} \int_{U}^{U_{g}} \frac{\Gamma_{\gamma}(U', J^{\pi'}, U, J^{\pi})}{\Gamma(U', J^{\pi'})} W(U', J^{\pi'}) dU' + W_{0}(U, J^{\pi})$$

$$r(E_n) = \frac{\sum_{J > (J_l + J_s)/2} W(U, J^{\pi})}{\sum_{J \le (J_l + J_s)/2} W(U, J^{\pi})}$$

$$r(E_n) = \sigma_{n2n}^m (E_n) / \sigma_{n2n}^g (E_n)$$

^{242m}Am $\sigma_{n2n}^{m}(E_{n}) = \sigma_{n2n}(E_{n})r(E_{n})/(1+r(E_{n}))$

^{242g}Am

$$\sigma_{n2n}^{g}(E_{n}) = \sigma_{n2n}(E_{n})/(1+r(E_{n}))$$

²⁴²Am levels

Splitted Gallaher-Moshkowski doublets

$$K^{+} = \left| K_{n} + K_{p} \right| \qquad K^{-} = \left| K_{n} - K_{p} \right|$$

Rotational bands are build on two-quasiparticle states

$$E_{JK\pi} = E_{JK} + 5.5 [J(J+1) - K(K+1)]$$

$$N(U) = e^{\frac{2\Delta_0}{T}} (e^{\frac{U}{T}} - 1)$$

^{236I}Np/(^{236s}Np+^{236I}Np)

30th International Seminar on Interaction of Neutrons with Nuclei: April 14 - 18, 2024, Frank' LNP, JINR, Dubna, Russia and Sharm El-Sheikh, Egypt

²⁴³Am(n,2n) ²⁴³Am(n,2n)^{242m}Am ²⁴³Am(n,2n)^{242g}Am

²⁴³Am(n,f)

²⁴³Am(n,F) PROMPT FISSION NEUTRON MULTIPLICITY

243 Am PFNS, E_n=15 MeV

30th International Seminar on Interaction of Neutrons with Nuclei: April 14 - 18, 2024, Frank' LNP, JINR, Dubna, Russia and Sharm El-Sheikh, Egypt

²⁴³Am(n,F), <E> of PFNS

CONCLUSIONS

- Calculated yields of ^{242g}Am and isomer ^{242m}Am states of the residual ²⁴²Am nuclide predict the branching ratio
- The branching ratio defined by the ratio of the populations of the lowest states. These populations defined by the γ-decay of the excited states, described by the standard kinetic equation. The absolute yield of ^{242g}Am is compatible with the measured data on ²⁴³Am(n,2n)^{242g}Am, En=15 MeV by Norris et al., 1982.
- The ordering of the low and high spin states is different in case of 236 Np and 242 Am, that explains different shapes of $r(E_n)$ near the (n,2n) reaction threshold, excitation energy dependences are similar.
- ²⁴³Am(n,F) PFNS data at 14.7 MeV by Drapchinsky (2004, released in 2012) support ²⁴³Am(n,xnf) distribution and exclusive neutron spectra of ²⁴³Am(n,2n) ^{1,2}