

Applications of the Tagged Neutron Method for Fundamental and Applied Research

Yuri Kopatch

Frank Laboratory of Neutron Physics Joint Institute for Nuclear Research Dubna

Project TANGRA @ JINR: TAgged Neutrons and Gamma RAys

Development of the tagged neutron method for determining the elemental structure of matter and nuclear reactions research

Main participants:

- JINR (FLNP, VBLHEP, DLNP, LRB), Dubna, Russia
- N.L. Dukhov All-Russian Automation Research Institute, Moscow, Russia.
- Lomonosov Moscow State University, Moscow, Russia.
- Institute Ruđer Bošković, Zagreb, Croatia
- INRNE, Bulgarian Academy of Sciences, Sofia, Bulgaria
- BHU Varanasi, India
- LLC DIAMANT, Dubna, Russia

The Tagged Neutron Method (TNM) or Associated Particle Technique

 $D + T \rightarrow {}^{4}He (3.5MeV) + n (14.1MeV)$

The 14.1 MeV neutron is tagged in time and direction by detecting the associated α -particle released in the opposite direction.

Main advantages of the method:

- significantly reduced background
- direct measurement of the neutron flux
- position sensitivity
- possibility to select time-correlated events using coincidences

Neutron generators

Some characteristics of commercial neutron generators

Type of NG	Metherial of	Number of	Pixel size	Distance between pixels				
	a-detecor	tagged beams	(mm)	(mm)				
Sodern, Euritrack	Si	64	5.8	0.2				
API-120	YAP	256	3	-				
ING-27	Si	9	10	1				
ING-27-64	Si	64	6	1				
ING-27-256	AsGa	256	4	0,1				

Produced by

N.L. Dukhov All-Russian Automation Research Institute Main characteristics:Maximal intensity~Neutron energy1Neutron radiation modesOperation time~

~5·10⁷ c⁻¹ 14.1 M₃B steady-state ~800 hours

Electronics and data acquisition system

Digitizers ADCM-32/64

Digitizers DSR-2/8/32/128

Parameters	ADCM	DSR
Number of channels	16/32/64	2 / 8/ 32 / 128
ADC resolution	14 bits	11/16 bits
Sampling frequency (MHz)	100/66	200/100
Interface	PCI-e	USB-3
Data analysis type	PC	FPGA
Maximal event rate per channel	$\sim 10^5 \text{ evt/sec}$	$\sim 5 \times 10^6 \text{ evt/sec}$

Measurements of tagged neutron beams profiles

2-coordinate position sensitive silicon detector

Beam profiles from the 9-pixel ING-27

Frank Laboratory of Neutron Physics

Experimental setup configurations

22 NaI(TI) detectors

18 BGO detectors

1 HPGe detector

Monte Carlo simulation

- Optimization of the experimental geometry
- Determination of the detector solid angles and geometric corrections
- Determination of corrections for multiple neutron scattering and self-absorption of gamma-rays in the sample.

Angular distributions of gamma-rays from inelastic scattering of 14.1 MeV neutrons

Angular distributions of y-rays for chromium

Angular distributions of γ -rays are the normalized differential cross sections:

$$\frac{d\sigma}{d\Omega}(\Theta) = \frac{\sigma^{\gamma}}{4\pi}W(\theta)$$

$$W(\theta) = 1 + \sum_{I=2,4\dots}^{2J} a_I P_I(\cos\theta)$$

Eγ⊡(keV)	Ref.	a ₂	a ₄		
	Our work	0.34 ± 0.02	*		
935.5	Abbodanno1973	0.35 ± 0.09	*		
	Oblozinsky1992	0.27 ± 0.06	*		
	Our work	0.23 ± 0.02	*		
1333.6	Abbodanno1973	0.41 ± 0.09	*		
	Oblozinsky1992	0.30 ± 0.05	*		
	Our work	0.16 ± 0.01	-0.06 ± 0.02		
1434.1	Abbodanno1973	0.18 ± 0.05	-0.06 ± 0.07		
	Oblozinsky1992	0.13 ± 0.03	0.03± 0.04		
1520.7	Oblozinsky1992	-0.12 ± 0.31	*		
1550.7	Our work	0.14 ± 0.05	*		
2038.2	Our work	0.15 ± 0.04	*		
3128.9	Our work	0.01 ± 0.03			

Table of gamma-ray yields for chromium

$\begin{bmatrix} E_{\gamma}(\text{Rev}) & \text{Reaction} & J_{i}^{*}(E_{i},\text{Rev}) & J_{j}^{*}(E_{j},\text{Rev}) & \text{Our work} & [42] \end{bmatrix}$	[3]
	[]
124,4 ${}^{52}Cr(n,p){}^{52}V$ (141,6) (17,2) 2,4 (0,5)	
$226,3 \qquad 5^{0} Cr(n,p)^{50} V \qquad (226,2) \qquad (0) \qquad 3,0 (0,6)$	
$320,1 \qquad \qquad 5^{52}Cr(n,d)^{51}V \qquad (320,1) \qquad (0) \qquad 2,2(0,8)$	1,8 (0,1)
$567,0 \qquad 5^{2}Cr(n,n')^{52}Cr \qquad (4039,2) \qquad (3472,2) \qquad 5,0 (0,9)$	
$600,2 \qquad \qquad 5^{2}Cr(n,n')^{52}Cr \qquad (4015,5) \qquad (3415,3) \qquad 10,0 (1,6)$	
$645,7^* \qquad 5^{52}Cr(n,p)^{52}V \qquad (793,5) \qquad (147,8) \qquad 9.5(1.0)$	
$647,5^* \qquad 5^2 Cr(n,n')^{52} Cr \qquad (3415,3) \qquad (2767,8) \qquad \delta,5(1,0)$	8,9 (0,3)
704,5 $5^{2}Cr(n,n')^{52}Cr$ (3472,2) (2767,8) -	5,4 (0,2)
$744,2^{*} \qquad 5^{2}Cr(n,n')^{52}Cr \qquad (3113,9) \qquad (2369,6) \qquad 12.2(1.5) \qquad 16,3(2.5)$	9) 9,1 (0,3)
749,1* ${}^{52}Cr(n,2n)^{51}Cr$ (749,1) (0) 12,5 (1,5)	5,4 (0,2)
783,3 ${}^{50}Cr(n,n'){}^{50}Cr$ (783,3) (0) 4,2 (0,5)	
791,3 ${}^{52}Cr(n,2n){}^{51}Cr$ (4563,0) (3771,7) 2,9 (0,5)	
$834,9 \qquad \qquad 54 Cr(n,n')^{54} Cr \qquad (834,9) \qquad (0) \qquad \qquad 3,1 (0,4)$	
848,2 ${}^{52}Cr(n,n'){}^{52}Cr$ (3615,9) (2767,8) 7,3 (0,5)	
935,5 ${}^{52}Cr(n,n'){}^{52}Cr$ (2369,6) (1434,1) 33,5 (0,8) 26,9 (3,	8) 30,3 (1,2)
$1164,6 \qquad 5^{2}Cr(n,2n)^{51}Cr \qquad (1164,6) \qquad (0) \qquad -$	4,6 (0,2)
$1246,3^{*} \qquad (3615,9) \qquad (2369,6) \qquad (2369,6)$	5,0 (0,2)
1247,7* (4015,5) (2767,8) 5,8 (0,9)	
$1289,5 \qquad \qquad 5^{33}Cr(n,n')^{53}Cr \qquad (1289,5) \qquad (0) \qquad \qquad 3,3 (0,7)$	
$1333,7 5^{2}Cr(n,n')^{52}Cr (2767,8) (1434,1) 26,4 (0,8) 22,1 (4,8)$	0) 26,2 (1,0)
$1434,1 \qquad {}^{52}Cr(n,n'){}^{52}Cr \qquad (1434,1) \qquad (0) \qquad 100 \qquad 100$	100
1530,7	<i>)) 5,1 (0,2)</i>
$1727,7^*$ $32Cr(a,a)^{52}Cr$ $(3161,7)$ $(1434,1)$ $5.7(0,7)$	3,3 (0,1)
1730,4* (4100,0) (2369,6) 5,7 (0,7)	
2038,2 $5^{2}Cr(n,n')^{52}Cr$ (3472,2) (1434,1) 1,7 (0,5)	
2257,7 ${}^{52}Cr(n,n'){}^{52}Cr$ (4627,3) (2369,6) 1,1 (0,5)	
2337,6 ${}^{52}Cr(n,n'){}^{52}Cr$ (3771,7) (1434,1) 2,1 (0,6)	
3128,9 ${}^{52}Cr(n,n'){}^{52}Cr$ (4563,0) (1434,1) 2,0 (0,7)	

TNM with high resolution gamma spectrometry

- energy spectrum in the coincidence window
- random background in the same coincidence window
- Pure spectrum after background subraction

New experimental setup

Setup for measuring γ -radiation cross sections. Includes 2 - HPGe and 4 - LaBr detectors. The geometry is optimized using Geant4.

Simultaneous measurement of γ -ray emission cross sections and angular distributions

We plan to measure:

Li, Be, B, C, N, O, F, Na, Mg, Al, Si, P, S,Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,Zn, Ga, Ge, As, Se, Br, Sr, Y, Zr, Nb, Mo,Pd, Ag, Cd, In, Sn, Sb, Te, I, Ba, Ta, La,Ce, Nd, Hf, W, Hg, Pb, Bi, U

1 – Ing-27; 2 – iron shielding; 3 – lead shielding; 4 – HPGe detectors; 5 – LaBr₃ detectors

First measurements with standard samples

Results of test measurements of γ-ray cross sections for ²⁸Si, ¹²C and ¹⁶O in comparison with literature data

		σ (mb)								
Eγ (keV)	Reaction	TANGRA	Recommended value	Range of experimental values						
1779.0	²⁸ Si(n,n') ²⁸ Si + ²⁹ Si(n,2n') ²⁸ Si	350 ± 20	403 ± 20	293 ± 28 488 ± 70						
6129.9	¹⁶ O(n,n') ¹⁶ O	113 ± 10	148 ± 10	84 ± 17 179 ± 22						
4438.9	¹² C(n,n') ¹² C	175 ± 6	187 ± 5	121 ± 8 440 ± 80						

Measurement of angular distribution of scattered neutrons on 12C

Main aim: to identify excited states of ¹²C and determine their properties.

See report of D. Grozdanov at ISINN-30

Experimental and theoretical study of (n-n'-γ) correlations

(n',γ) correlations are important for:

- Understanding the reaction mechanism
- Testing the theoretical predictions
- Checking for nuclear forces invariance for *n* and *p*

See report of P. Filonchik at ISINN-30

Modeling of an experimental setup for determining the carbon content in soil using the TNM.

General view of the setup model (left). Neutron penetration depth profile (right).

Decomposition of the time spectrum into components formed by reactions at different depths for cases with constant (left) and variable (right) carbon concentrations.

Pilot setup for determining the carbon content in soil using the TNM (together with LLC "Diamant")

See report of M. Sapozhnikov at ISINN-30

Future ECO-system for soil carbon analysis

Conclusions

The tagged neutron method (TNM) is an effective tool for studying the reactions of fast neutrons with nuclei, which makes it possible to successfully implement a program for measuring differential cross sections of neutron scattering and γ ray production, as well as a program for the application of the TNM for non-destructive elemental analysis.

Period	1	Periodic Table 1-172										18	Orbitals						
1	1 H	2	- Измерено в Nal/BGO/HpGe 2 - Измерено в Nal/HpGe 13 14										14	15	16	17	2 He	1s	
2	3 Li	4 Be	4 - Измерено в BGO/HpGe 5 6 7 8 9 Ве - Измерено в HpGe 5 6 7 8 9										10 Ne	2s2p					
3	11 Na	12 Mg	3	- не и 4	13Mep 5	ено 6	7	8	9	10	11	12	13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	3s3p
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	4s3d4p
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe	5s4d5p
6	55 Cs	56 Ba	57- 71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn	6s5d6p
7	87 Fr	88 Ra	89- 103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Nh	114 Fl	115 Mc	116 Lv	117 Ts	118 Og	7s6d7p
8	119	120	121-	156	157	158	159	160	161	162	163	164	139	140	169	170	171	172	8s7d8p
9	165	166		- Оп	убли	кован	10						167	168					9s9p
		6	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		4f
		7	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		5f
		8	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		6f

Thank you for your attention!