Cross-section measurement of ¹⁴N(n, p)¹⁴C reaction

Wei Jiang, Kang Sun, Qiuyue Luo, Ruirui Fan Institute of High Energy Physics, CAS & China Spallation Neutron Source 2024-04-16

The 30th International Seminar on Interaction of Neutrons with Nuclei (ISINN-30), Sharm El-Sheikh, Egypt

- Background
- Experimental setup
- Data analysis
- Cross sections
- Summary

Background

 $1 \cdot {}^{14}N(n, p){}^{14}C$ reaction is the most important poison reaction of the main neutron source of the s-process.

2, ${}^{14}N(n, p){}^{14}C$ reaction is an important link in the reaction chain for the formation of ${}^{19}F$

 $^{14}N(n, p)^{14}C(\alpha, \gamma)^{18}O(p, \alpha)^{15}N(\alpha, \gamma)^{19}F$

3. In medical treatment research using neutron, due to the high proportion of ¹⁴N content in human's body, $^{14}N(n, p)^{14}C$ reaction cross sections also needed.

Cross sections of ${}^{14}N(n, p){}^{14}C$ reaction have been measured from meV to 10 MeV.

- Based on the cross sections measured at 123 and 178 keV, Wallner et al.(in 2016) suggest the resonance peak at 493 keV was 3.3 times smaller than that of Morgan.
- Measurement at n-TOF(published in 2023) shows that the cross sections of the resonance at 493 keV is consistent with that given by the ENDF/B-VIII.0 database.
- The low energy tailing (100-450 keV) of the first resonance peak given by the measurement at n-TOF is lower than in the ENDF/B-VIII.0 database.
- At present, there is no differential cross-section data of ¹⁴N(n, p)¹⁴C reaction in the whole energy region.
- Reaction channels' J^{π}

Wallner, et al, Phys. Rev. C 93 (2016) :045803; Pablo Torres-Sánchez, et al, Phys. Rev. C 107 (2023) : 064617;

Recent researches focus on:

- Cross sections in the keV energy region
- > Reaction channels' J^{π}
- Differential cross sections
- > Resonance peaks in MeV region

Back-n white neutron facility

- The CSNS Back-n white neutron facility in DongGuan, south China
- Pulse neutron beam; Energy range: 0.3 eV-300 MeV(with Gd absorber in the beamline)
- Time interval between two pulses: 40 ms (25 Hz)
- Double bunches; Pulse width: 60 ns(FWHM).

CSNS Back-n white neutron facility

Experiment setup

- 13 silicon PIN detectors; Charge preamplifiers in vacuum to keep noise as low as possible
- December 2nd to 22th (2022) (beam time about 400 hours)

	F1	F2	F3	F4	F5	F6	F7	B1	B2	B3	B4	B5	B6
Angle(°):	21.4	32.86	44.29	55.71	67.14	78.57	90	105	121.32	133.88	146.41	158.74	170
D/mm	189.5	189.5	189.5	189.5	189.5	189.5	189.5	193	195.61	202.73	193.75	204.64	

¹⁴N target: 200 μ g/cm²C₃H₆N₆ (Melamine) in each side, on 10.8 μ g/cm² Al substrate, **double-sided target;**

Measurement relative to ⁶Li(n, t) reaction

- ⁶LiF: 360 μ g/cm², single-sided target, on 10 μ g/cm² Al substrate;
- Al foil for background subtraction;
- ✓ During experiment, targets were rotated 30° to reduce the energy loss of the products in large angle.
- ✓ Beam spot: neutron beam's diameter about 20mm (neutron switch ϕ 50+collimator 1 ϕ 15);
- ✓ Waveform recorded by digitizer;

Target: 1: ⁶LiF+Al 2: $C_3H_6N_6$ +Al 3: Al 4: α source

- Detectors' energy calibration & TOF calibration
- Amplitude vs TOF spectra: ${}^{14}N(n, p){}^{14}C \& {}^{6}Li(n, t)$ identification
- Unfolding of the double-bunched beam
- Statistics of each neutron energy bin
- Considering Back-n's energy spectrum
- Normalize differential cross sections of ⁶Li(n, t) reaction at 0.2 MeV
- Relative to the ⁶Li(n, t) reaction, differential cross sections of the ¹⁴N(n, p)¹⁴C reaction
- R-Matrix analysis

Protons from ¹⁴N(n, p)¹⁴C

- 0.1-0.5 MeV: protons from ${}^{14}N(n, p){}^{14}C$ are rare
- **4 proton event bands** of ${}^{14}N(n, p){}^{14}C$ reaction in MeV region:

Double bunches : 410 ns interval. E_n is based on the first bunch, with **red** for the first bunch and **blue** for the second. Double-sided target: double-sided $C_3H_6N_6$ on Al substrate, events from each neutron bunch split into 2 bands.

Background: ¹⁴N(n, α), np scattering (seriously affected at small angles), Al(n, α).....

Unfolding of the double-bunched beam

peakvalue[0]:(peak_tof[0]+193+20) ChannelID=13

- In 0.1-0.45 MeV neutron energy region, the cross-section is about 1-5 mb, and the differential cross-section is as low as 0.1mb.
- Resonances' peak-to-valley is ideal.

peakvalue[0]:(peak_tof[0]+193+0) ChannelID=5

Counts varies with the neutron flight time(40 ns per bin)

Cross-section evaluation data of ¹⁴N(n, p) reaction

Differential cross sections of ¹⁴N(n, p)¹⁴C

- Differential cross sections of ${}^{14}N(n, p){}^{14}C$ relative to ${}^{6}Li(n, t)$ reaction (E_n=0.5 MeV).
- ⁶Li(n, t) reaction's cross sections are also deduced.

The preliminary experimental results without error analysis at present

Differential cross sections of ¹⁴N(n, p)¹⁴C

- $E_n \le 2$ MeV, differential cross sections varies little in the $\theta_{lab}(55^{\circ}-158^{\circ})$.
- Differential cross sections in the E_n region of 100-450 keV is ~0.1mb, as the uncertainty is large.
- $E_n > 2$ MeV, there is a very obvious angular distribution and the resonance peaks are relatively dense, needs to be further explained with R-Matrix analysis.

- Differential cross-section measurement of ¹⁴N(n, p) ¹⁴C reaction was carried out.
- Preliminary differential cross sections in 0.1 6 MeV E_n region have been obtained.
- Angular distribution of the ¹⁴N(n, p) reaction at some neutron energy shows anisotropies.
- Preliminary result at E_n ~493 keV resonance supports the results of n-TOF(2023), while the cross sections of the 100-450 keV region needs to be further analyzed.
- **R**-Matrix analysis still is ongoing.

Thanks for your attention!

