

JOINT INSTITUTE FOR NUCLEAR RESEARCH

> International Seminar on Interaction of Neutrons

with Nuclei

The measurement of the ⁶Li(n, t)⁴He reaction crosssection in the energy range of 4.25–7.50 MeV

P.S. Prusachenko^{1*}, T.L. Bobrovskiy²

1 — Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research 2 — Leypunsky named Institute for Physics and Power Engineering

*email: prusachenko@jinr.ru

Outline

- Motivation
- Status of cross-section data on ⁶Li(n, t)⁴He reaction
- Current problems
- Experimental method and setup
- Data analysis
- Results
- Conclusions

Motivation

The ⁶Li(n,t)⁴He reaction is of great interest for:

- Thermonuclear industry as a tritium breeder
- Monitoring neutron flux in various nuclear physics experiment (nTOF, LANL etc)
- Neutron shielding

Some open problem:

- The existing experimental datasets on the ⁶Li(n,t)⁴He reaction are quite limited and contradictory for an energy range above 4.0 MeV
- There is significant difference (20-50%) in evaluated cross-sections
- New experimental data are extremely contradictory

Methodical features

- The Frish gridded ionization chambers are most often used for ⁶Li(n,t)⁴He reaction cross-section measurements for the neutron energies less than 4 MeV
- It's difficult to use the ionization chambers at higher energies due to the high Qvalue of the reaction
- The scintillation method is usually used in this energy range

The previous experiments

Fig.1. Experimental data and theoretical evaluations on cross-section of ⁶Li(n,t)⁴He reaction above 3 MeV

- Some new experiments were performed
- M. Devlin's experiment was performed using a set of silicon semiconductor detectors. There was a resonant structure contradictory to all previous experiments. There was no detailed description of experimental procedure, the set of angles was limited.
- Leo E. Kirsch et all performed new measurements relative to the ²⁵²Cf prompt fission neutron spectrum. Two different scintillators – Lil:Eu and Cs₂LiYCl₆:Ce – were used. There were a great difference between the results obtained using different scintillators.

^{1.} M. Devlin et al, Differential Cross Section Measurements for the ⁶Li(n,t)⁴He Reaction in the Few MeV Region, AIP Conf. Proc. 1090, 215–219 (2009); https://doi.org/10.1063/1.3087015

^{2.} Leo E. Kirsch et al, A new measurement of the Li(n, α)t cross section at MeV energies using a ²⁵²Cf fission chamber and Li scintillators, Nucl. Instrum. Methods Phys. Res. A 874, 57-65 (2017); <u>https://doi.org/10.1016/j.nima.2017.08.046</u>

The Leo E. Kirsch's experiment

- There is a good description of experiment
- ²⁵²Cf as a neutron source, start from fission fragments
- Lil:Eu and Cs₂LiYCl₆:Ce (CLYC) scintillators
- Short flight path in different experimental runs 65 and 125 cm
- Digital acquisition system based on waveform digitizer (500 MS per second and 14 bit ADC resolution)
- Digital signal processing **constant fraction discriminator for timestamps determination**, pulse shape discrimination for CLYC
- The time scale was calibrated using the position of prompt γ-rays peak

Our analysis of the Leo E. Kirsch's experiment

Volume 1056, November 2023, 168582

Full Length Article

Features of using Cs₂LiYCl₆:Ce based scintillation detector for time-of-flight application

P.S. Prusachenko 🙎 🖾 , T.L. Bobrovskiy

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

Our analysis of the Leo E. Kirsch's experiment

Before and after correction

Fig. 4. The experimental data on the ${}^{6}Li(n,t){}^{4}He$ reaction cross-section from the Leo Kirsch's work obtained by the CLYC-based detector before and after correction

• The timestamp determination error – the neutron energy determination error

• The neutron energy determination error – the error in the neutron yield choice

• ²⁵²Cf spectrum has sharp dependence of neutron yield on energy – the large error

• The discrepancy observed in the Leo E. Kirsch's paper mostly vanishes after our correction

Open questions

- The exact value of constant fraction in Leo E. Kirsch's work is unknown
- The timestamp shift for Lil:Eu?
- The γ-background correction increases the uncertainty
- There are contradictions between Leo E. Kirsch data (Lil:Eu), M. Devlin data and other results

The new experiments is needed!

The aim of the work was to obtain the new experimental data on ⁶Li(n,t)⁴He reaction cross-section taking into account the existing methodical problem

Our new measurements

Eur. Phys. J. A (2024) 60:12 https://doi.org/10.1140/epja/s10050-024-01236-3

Regular Article - Experimental Physics

The measurement of the ⁶Li(n, t)⁴He reaction cross-section in the energy range of 4.25–7.50 MeV

P. S. Prusachenko^a, T. L. Bobrovskiy

Institute for Physics and Power Engineering, Experimental Nuclear Physics Department, Bondarenko Sq. 1, Obninsk 249033, Russian Federation

Received: 24 October 2023 / Accepted: 26 December 2023

© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2024 Communicated by Aurora Tumino.

Experimental method

- The CLYC crystal was used
- γ-background was rejected by the pulse shape discrimination
- Quasi-monoenergetic neutron source in combination with time-of-flight method to avoid timestamp shift effect and background neutrons
- ²³⁵U fission cross-section for data normalization

Experimental setup

Fig. 5. Layout (not to scale) of experimental setup for the measurement of the ⁶Li(n,t)⁴He reaction cross-section

Geometry and accelerator:

- An axially symmetrical geometry of detectors
- 3MV Tandem accelerator
- Target TiD₂ (~1 mg/cm²) on copper backing
- Neutron energy range from 4.25 to 7.40
- Pulsed deuteron beam

CLYC:

- Crystal size of 38x20 mm
- ⁶Li enrichment of 95%
- Flight path 186.3±0.5 cm
- Cadmium case (~0.5 mm)
- Inside the shielding collimator

Acquisition system:

- Waveform digitizer
- Sampling rate of 500 MS/s, ADC resolution of 14 bit 13

Fission chamber:

- 4 double side layers of ²³⁵U₃O₈
- Total number of ²³⁵U atoms is 56±1.10¹⁸
- Efficiency is 0.91±0.01
- Flight path 46.5±0.5 cm
- Cadmium case (~0.5 mm)

Digital signal processing

 Timestamps – the constant fraction algorithm emulation. The optimal constant fraction values were 20% for CLYC and 30% for fission chamber and pick-up electrode

 Pulse integrals – 3000 ns and 80 ns from the pulse start for CLYC and fission chamber respectively

 Pulse shape discrimination for CLYC – the comparison of pulse integrals in different windows – 50 and 3000 ns from pulse start

Analysis of CLYC spectra

Analysis of spectra from fission chamber

Fig. 9. 1-d TOF spectrum corresponding to the fission chamber events after α -particles rejection

- Rejection of α-particles
- Building the TOF spectra for each value of neutron energy
- Determination of peak areas
 after background removing

Cross-section determination

$$\sigma(E) = \frac{N_{clyc}\alpha_{clyc}\sigma_{ff}(E)n_{u}\varepsilon_{ff}}{N_{ff}\alpha_{ff}n_{clyc}\beta} \frac{R_{chamb}^{2}}{R_{clyc}^{2}}$$

- N_{clyc} and N_{ff} area of peaks corresponded to $^6\text{Li}(n,\ t)^4\text{He}$ reaction and monitor chamber respectively
- α_{clyc} and α_{ff} multiple neutron scattering correction for CLYC and monitor chamber
- n_u and n_{clyc} number of ²³⁵U and ⁶Li atoms
- $\sigma(ff) {}^{235}U$ fission cross-section
- $\epsilon(ff)$ efficiency of fission fragments detection
- β wall effect correction factor for CLYC detector
- R_{chamb} and R_{clyc} the flight paths to the monitor chamber and CLYC detector

Corrections

Fig. 10. The example of simulated 2-d spectrum, "TOF - Dep. Energy", for the CLYC crystal.

- The effect of multiple neutron scattering was evaluated using GEANT4 framework
- Two different simulations for each incident neutron energy

 taking into account the full geometry of experimental setup (opt. 1) and without one (opt. 2).
- The correction factor for CLYC was no more 0.995
- The correction factor for FC after background removing was no more 0.99 in the same conditions
- The influence of wall effect in CLYC was negligible

Fig. 11. The example of simulated 1-d TOF spectrum vs experimental one for fission chamber, $E_n = 4.75$ MeV

Targets characterization

Fig. 12. Measured y-ray spectra from radioactive decay of ²³⁵U vs background.

- The number of ⁶Li atoms in the CLYC was calculated based on the scintillator stoichiometry. enrichment and the crystal size given in its specification
- To verify this value the additional measurements in the neutron energy range 0.5 - 0.9 MeV were performed
- The number of ²³⁵U atoms was obtained by measuring the γ -rays from the radioactive decay of 235U
- The efficiency of the fission fragments detection was obtained according to the method ٤ff proposed by C. Budtz-Jorgensen¹

1. C. Budtz-Jorgensen et al, Assaying of targets for nuclear measurements with a gridded ionization chamber, Nucl. Instrum. Methods Phys. Res., Sect. A 236, 630 (1985); URL: https://doi.org/10.1016/0168-9002(85)90972-6.

Results

Fig. 14. The experimental data obtained in this work (red dots) compared with the other experimental results and the cross-section evaluations

Uncertainty source	Contribution (%)
Statistical (1σ)	2.0 - 3.7
Background subtraction	1.0 - 3.5
Number of ²³⁵ U atoms	2.2
Fission chamber efficiency	1.1
Solid angle	1.8
Number of ⁶ Li atoms	1.6
Multiple scattering correction	2.1
Detectors angle	1.3 – 3.8

- The data from this work are in agreement within uncertainties with other experimental data excepting the Devlin's and Leo Kirsch's data
- No resonant structures predicted by the Rmatrix analysis of the experimental data measured by Devlin are observed
- The difference with JENDL-5.0 evaluation is
 on average 8%

Conclusions

- The total cross section of the ⁶Li(n,t)⁴He reaction was measured in the energy range 4.25-7.50 MeV
- The ²³⁵U fission cross-section was used to normalize the data
- A Cs₂LiYCl₆:Ce based scintillation detector was used as a lithium-containing target
- The total systematic measurement error was 4.6-7.0% with a statistical error of 2.0-3.7%.
- The data obtained in the work are in agreement with old experimental results within uncertainties
- The data obtained do not support the evaluated cross section of the ⁶Li(n,t)⁴He reaction from the ENDF-B/VIII.0 library.
- At the same time, the average difference between the JENDL-5 evaluation and the our data also slightly exceeds the total systematic measurement uncertainty.

Thank you for your attention!

Pavel Prusachenko,

senior researcher of Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research

prusachenko@jinr.ru