D.N. Grozdanov on behalf of TANGRA collaboration dimitar@nf.jinr.ru

Outline

- Project «TANGRA»
- Motivation and object of research
- Experimental setup
- Measurement of "tagged" neutron beam profiles
- Cross-section equation
- Intrinsic efficiency of the neutron detector
- Solid angle calculation
- Experimental data processing
- Angular distributions of scattered neutrons
- Conclusions

TANGRA project

Project «TANGRA» (TAgged Neutron and Gamma RAys) at JINR-FLNP (Dubna) is aimed at studying nuclear reactions induced by fast neutrons. At a TANGRA setup, the sample under investigation is irradiated with $14-\mathrm{MeV}$ neutrons, produced by the ING-27 neutron generator.
-The main feature of the setup is the use of the tagged neutron method (TNM).

- Basically, the angular distributions of γ-rays and partial cross sections of detected γ-transitions were measured [1-3].
- Recently, the angular distributions of scattered neutrons have been measured.

1. N.A. Fedorov et al. Bull. Russ. Acad. Sci.: Phys. 84 (2020) 367
2. D.N. Grozdanov et al. Phys. At. Nucl. 81 (2018) 588
3. D.N. Grozdanov et al. Phys. At. Nucl. 83 (2020) 384

Fig. 1. Standard diagram of TANGRA experimental setups.

Motivation and the object of research

Object of our research $-{ }^{12} \mathrm{C}$ nuclei.

- This is a light nucleus with a relatively high energy of the first excited state $(4.44 \mathrm{MeV})$, which decays with the emission of n and γ - radiation.
- The second and the third excited states are decaying through α particle breakup.
- First excited states can be treated in the collective model [4, 5] using the rotational approach for a strongly oblate nucleus.

Table 1. Quadrupole deformation β_{2} for ${ }^{12} \mathrm{C}$ state obtained from various sources using different methods.

$\beta_{2}(B(E 2) \uparrow)$	$\beta_{2}\left(\mathrm{O}_{\text {mom }}\right)$	$\beta_{2}(\mathrm{OM}, \mathrm{CC})$	$\beta_{2}(\mathrm{OM}, \mathrm{CC})$
0.592 ± 0.036	$-0.411 \pm$	$-0.62[4]$	$-0.60[5]$
$[6]$	$0.226[7]$		

Fig. 2. Scheme for ${ }^{12} \mathrm{C}$ low-lying levels with the de-excitation processes probabilities p. S_{α} stands for α-particle separation energy.

Experimental setup

Fig. 3. Photo of the TANGRA setup with plastic detectors for measuring angular distributions of the scattered neutrons. $1-$ ING-27 neutron generator, 2 - irradiated carbon sample, 3 - one of the 20 plastic detectors used in the registration system.
Neutron source: ING-27 generator
Sample: graphite block, $44 \mathrm{~cm} \times 44 \mathrm{~cm} \times 2 \mathrm{~cm}$
Neutron detector: polyphenyltoluene detector $(Z \approx 5.5)$

Fig. 4. Scheme of the TANGRA setup with plastic detectors for measuring angular distributions of the scattered neutrons. Designations as in Fig. 3.
Dimensions are in cm .

ING-27

Fig. 5. 1 - neutron generator target, $2-\alpha$-detector, 3 - signal connector of α-detector, 4 - high-voltage power connectors, 5 -low-voltage control connector

Neutron detector

Fig. 6. 1 - plastic scintillator, 2 - reflective winding, 3 aluminium holder, 4 - ETL9821KFLB photomultiplier, 5 magnetic screen, 6 - BNC connectors (x2) and $7-$ SHV connector.

Measurement of "tagged" neutron beam profiles

2D-detector, made of 4 double-sided

 stripped position-sensitive $\mathbf{S i}$-detectorsEach Si detector consists of 32×32 strips $\sim 1.8 \mathrm{~mm}$ thick
Size of one detector: 60x60 mm²
Total size: $120 \times 120 \mathrm{~mm}^{2}$
Thickness: 0.3 mm
Neutron detection efficiency: $\sim 0.8 \%$
Each 8 strips are grouped together, forming a matrix 8×8 with a pixel size of $\sim 1.5 \times 1.5 \mathrm{~cm}^{2}$

Fig. 7. Schematic illustration of the 2D detector

Fig. 8. Neutron beam 2D profile (1) on the target (2).

Cross-section equation

$$
\left(\frac{d \sigma}{d \Omega}\right)_{\theta}=\frac{N(\theta)}{N_{\alpha} C N_{n u c l}} \cos (\psi) \times 10^{27}\left[\frac{\mathrm{mb}}{\mathrm{sr}}\right], C=\epsilon d \Omega, N_{n u c l}=\frac{\rho N_{a} D}{A}
$$

Where:
θ - is the angle between the beam and the direction towards the detector from the point of interaction of the beam with the target
$N(\theta)$ - count of the neutron detector for the angle θ in coincidence with the X strip of the alpha detector
N_{α} - Neutron counting (alpha detector count without coincidence)
C - correction factor
ϵ - neutron detector intrinsic efficiency
$d \Omega$ - solid angle covered by a neutron detector [$1 / \mathrm{sr}$]
$N_{\text {nucl }}$ - average number of nuclei
A - mass number of target atoms $=12[\mathrm{~g} / \mathrm{mol}]$
$\rho-$ target density $=1.6405\left[\mathrm{~g} / \mathrm{cm}^{3}\right]$
N_{a} - Avogadro's number $=6.02 \times 10^{23}[1 / \mathrm{mol}]$
D - target thickness $=2[\mathrm{~cm}]$
$\cos (\psi)$ - angle between beam and axis of symmetry
Fig. 9. Scheme for calculating the angle between the neutron beam and the gamma detector (θ)

Intrinsic efficiency of the neutron detector

Fig. 10. Experimental intrinsic efficiency ϵ (\%) for 14.1 (MeV) neutrons for one detector

Fig. 11. Geant4 intrinsic efficiency $\epsilon(\%)$ for neutrons with different energy. Where: 1 is experimental measurement and 2 - modeling.

Solid angle calculation

Fig. 13. Geant4 solid angle calculation.
Fig. 8. Scheme of the TANGRA setup with some of "tagged" neutron beam's. Where: 1 - is ING-27, 2 - target.

Experimental data processing

Fig. 14. Examples of the time-of-flight spectra obtained. Peaks are labelled with source reaction, registered particle is painted red.
Where:
A - is measurement with target $\left({ }^{12} \mathrm{C}\right)$, Time $\sim 48 \mathrm{~h}$;
$B-$ is measurement without target (Background), Time $\sim 28 h$,
C - Net spectra (without background)
($\mathrm{n}, \mathrm{X} \gamma_{0}$) - γ from ING-27
($\mathrm{n}, \mathrm{X} \gamma_{1}$) $-\gamma$ from target $\left({ }^{12} \mathrm{C}\right)$
($\mathrm{n}, \mathrm{X} \gamma_{2}$) $-\gamma$ from the opposite wall
$\left(\mathrm{n}, \mathrm{n}_{0}\right)$ - elastic scattering
$\left(\mathrm{n}, \mathrm{n}_{1}\right)$ - inelastic scattering to the 1 excited state of ${ }^{12} \mathrm{C} 4.44 \mathrm{MeV}$ $\left(\mathrm{n}, \mathrm{n}_{2}\right)$ - inelastic scattering to the 2 excited state of ${ }^{12} \mathrm{C} 7.65 \mathrm{MeV}$ $\left(\mathrm{n}, \mathrm{n}_{3}\right)$ - inelastic scattering to the 3 excited state of ${ }^{12} \mathrm{C} 9.64 \mathrm{MeV}$ $\left(\mathrm{n}, \mathrm{n}_{4}\right)$ - inelastic scattering to the 4 excited state of ${ }^{12} \mathrm{C} 10.30 \mathrm{MeV}$ $\left(\mathrm{n}, \mathrm{n}_{5}\right)$ - inelastic scattering to the 5 excited state of ${ }^{12} \mathrm{C} 10.84 \mathrm{MeV}$

Angular distributions of scattered neutrons

Fig.16. Differential cross sections for neutron scattering on ${ }^{12} \mathrm{C}$
in comparison with experimental data.

Angular distributions of scattered neutrons

Fig.17. Differential cross sections for neutron scattering on ${ }^{12} \mathrm{C}$
in comparison with experimental data.

Angular distributions of scattered neutrons

Fig.18. Differential cross sections for neutron scattering on ${ }^{12} \mathrm{C}$
in comparison with experimental data.

Conclusions

As a result of the work:

- Experiment of neutron scattering on carbon carried out by TANGRA setup showed us possibility to measure angular distributions of scattered neutrons and even, with some improvements, differential cross sections of scattered neutrons.
- It was confirmed that the experimental technique used in this work is capable of studying the up to five excited states of ${ }^{12} \mathrm{C}$.
- Showing good agreement between our data and other work, the angular distribution for the fourth excited states of ${ }^{12} \mathrm{C}$ was measured for the first time.

Thank you for your attention

Good team @ Good results

TALYS nuclear reaction code

TALYS is a code for nuclear reaction calculations. It covers an extensive range of projectile energies ($1 \mathrm{keV}-200$ MeV) and nuclei masses ($\mathrm{A} \geq 12$).

TALYS has implementations of several models for nuclear reaction description: for direct processes (DWBA, CC), compound-nucleus processes (Hauser-Feshbach models), nuclear level densities (Fermi-gas model and others).

TALYS 1.9 was used for calculation of:

- Partial γ-transitions cross sections
- Differential cross sections of elastic and inelastic neutron scattering

Fig.7. Scheme of the complementary use of nuclear models in the TALYS 1.9 calculations.

Fig.8. Differential cross section approximation in TalysLib for ${ }^{12} \mathrm{C}$ based on our experimental data.

Source	Approach	V_{V} MeV	W_{V} MeV	r_{V} fm	a_{V} fm	W_{D} MeV	r_{D} fm	a_{D} fm	$V_{S O}$ MeV	$W_{S O}$ MeV	$r_{S O}$ fm	$a_{S O}$ fm	β_{2}	$\mathrm{x}^{2} / \mathrm{N}$
Default calc.	DWBA	49.07	1.26	1.13	0.68	7.65	1.31	0.54	5.39	-0.07	0.90	0.59	0.40	73.5
Our data fit	CC rot.	49.78	0.03	1.05	0.51	3.74	1.27	0.31	7.79	-3.38	1.00	0.55	-0.95	2.49
Other data fit	CC rot.	49.73	0.21	1.11	0.44	5.42	1.20	0.34	6.31	-3.75	1.21	0.59	-0.83	2.72

(N stands for number of experimental points used in the fit. The notations in the tables are the same as in the optical model parametrization of A.J. Koning and J.P. Delaroche [12].)

Comparison of integral cross sections of several processes taking place at 14.1 MeV

Experiment	$\begin{gathered} \sigma_{\text {tot }} \\ \mathrm{mb} \\ 1290 \pm 100[13] \\ 1430 \pm 100[14] \end{gathered}$	$\begin{aligned} & \Sigma_{\text {inl }} \\ & \mathrm{mb} \\ & 1,05 \end{aligned}$	$\begin{gathered} \sigma_{\mathrm{el}} \\ \mathrm{mb} \\ 784 \pm 45[9] \end{gathered}$	$\begin{gathered} \sigma\left(\mathrm{n}, \mathrm{n}_{1}\right) \\ \mathrm{mb} \\ 203 \pm 12[9] \end{gathered}$	$\begin{gathered} \sigma\left(\mathrm{n}, \mathrm{n}_{2}\right) \\ \mathrm{mb} \\ 11 \pm 1[9] \end{gathered}$	$\begin{gathered} \sigma\left(\mathrm{n}, \mathrm{n}_{3}\right) \\ \mathrm{mb} \\ 63 \pm 4[5] \end{gathered}$	$\begin{gathered} \hline \sigma_{\gamma}\left(2_{1}{ }^{+} \rightarrow 0_{\text {g.s. }}{ }^{+}\right) \\ \mathrm{mb} \\ 180 \pm 7[15] \\ 168 \pm 20[16] \end{gathered}$
Default calc.	1572	341	866	142	19	68	202
Our data fit	1241	311	829	263	6	11	279
Other data 121A. fit Kiningand $^{\text {and }}$	1264	$\begin{aligned} & 293 \\ & 713(20) \end{aligned}$	$\begin{gathered} 826 \\ \text { 231_[13]M. } \end{gathered}$	211 no et al Nucl.	$\begin{gathered} 8 \\ \text { Eng_172 } \\ \hline \end{gathered}$	22 268 [14] $\mathrm{S} V$	237

Annex: Optical model potential

It is believed that the interaction between the neutron and the nucleus can be described by the complex potential.
Real part takes account of the refraction of particle wave on the nucleus border.
Imaginary part takes account of wave absorption as such, all of the nonelastic reactions.
Optical model cannot describe inelastic channels of nuclear reaction separately without some modifications.
The default optical model potentials used in TALYS are the local and global parametrisations of Koning and Delaroche [12]:

$$
\mathcal{U}(r, E)=-\mathcal{V}_{V}(r, E)-i \mathcal{W}_{V}(r, E)-i \mathcal{W}_{D}(r, E)+\mathcal{V}_{S O}(r, E) .1 . \sigma+i \mathcal{W}_{S O}(r, E) . \text {.. } \sigma
$$

$$
\begin{array}{rlr}
\mathcal{V}_{V}(r, E) & =V_{V}(E) f\left(r, R_{V}, a_{V}\right), & \text { The form factor is a Woods-Saxon shape: } \\
\mathcal{W}_{V}(r, E) & =W_{V}(E) f\left(r, R_{V}, a_{V}\right), & f\left(r, R_{i}, a_{i}\right)=\left(1+\exp \left[\left(r-R_{i}\right) / a_{i}\right]\right)^{-1}, \\
\mathcal{W}_{D}(r, E) & =-4 a_{D} W_{D}(E) \frac{d}{d r} f\left(r, R_{D}, a_{D}\right), & \\
\mathcal{V}_{S O}(r, E) & =V_{S O}(E)\left(\frac{\hbar}{m_{\pi} c}\right)^{2} \frac{1}{r} \frac{d}{d r} f\left(r, R_{S O}, a_{S O}\right), & \\
\mathcal{W}_{S O}(r, E) & =W_{S O}(E)\left(\frac{\hbar}{m_{\pi} c}\right)^{2} \frac{1}{r} \frac{d}{d r} f\left(r, R_{S O}, a_{S O}\right) . &
\end{array}
$$

Annex: Models for direct processes

1. Distorted Wave Born Approximation (DWBA)

- Scattering and absorption are the main processes
- Any reaction channel does not have prevailing contribution to the total cross section.

2. Coupled channels method (CC)

- Full consideration of several selected reaction channels
- The influence of the discarded channels is taken into account through the optical potential of the nucleus

$$
\text { In case of spherical optical potential: } \quad R_{i}=r_{i} A^{1 / 3}
$$

In case of rotational model with static deformation:
Y - spherical harmonics,

$$
R_{i}=r_{i} A^{1 / 3}\left[1+\sum_{\lambda=2,4, \ldots} \beta_{\lambda} Y_{\lambda}^{0}(\Omega)\right]
$$

$\beta_{2}-$ quadrupole deformation of the nucleus
In case of vibrational model with dynamic deformation:

$$
R_{i}=r_{i} A^{1 / 3}\left[1+\sum_{\lambda \mu} \alpha_{\lambda \mu} Y_{\lambda}^{\mu}(\Omega)\right]
$$

