

Angular correlation (n', γ) in reaction of neutron's inelastic scattering on ${}^{12}C$

P.G. Filonchik, A.L. Barabanov and TANGRA collaboration

Outline

- 1. Motivations of studying (n', γ) -correlations
- 2. Previous experiment
- 3. New experiment
 - 1. Setup
 - 2. Calibration
 - 3. Experiment
 - 4. Theory
 - 5. Comparison with other works
- 4. Plans

Kelly at al. 2021

FIG. 12. The results for the normalized correlated $n \cdot \gamma$ distribution data at $E_a \approx 14$ MeV as γ distributions compared to the available literature data for (a) $\theta_n = 30^\circ$, (b) $\theta_n = 45^\circ$, (c) $\theta_n = 60^\circ$, (d) $\theta_n = 75^\circ$, (e) $\theta_n = 90^\circ$, and (f) $\theta_n = 105^\circ$. The literature data on these plots are scaled to the present results.

Neutron inelastic scattering on ¹²C

TAgged Neutrons and Gamma Rays (TANGRA) 2022-2023

Experimental setup

20 detectors around carbon target

(n', γ) -correlations

det 8, $\theta_{n'}$ = 135° det 11, $\theta_{n'}$ = 195° 2.5 2.5 Area Area $p0 = 1.00 \pm 0.00$ $p0 = 1.00 \pm 0.00$ p0 = 1.00 ± 0.00 $p0 = 1.00 \pm 0.00$ γ (n' -> 8th detector) • γ (n' -> 11 th detector) $p1 = -0.02 \pm 0.11$ $p1 = 0.25 \pm 0.02$ • all γ (not fixed neutron) $p1 = 0.30\ \pm\ 0.09$ $p1 = 0.25 \pm 0.02$ all γ (not fixed neutron) p2 = -0.29 ± 0.04 $p2 = -0.03 \pm 0.17$ 2 A Benetskii et al. 1963 $p2 = -0.63 \pm 0.13$ p2 = -0.29 ± 0.04 1.5 1.5 0.5 0.5 0_1 -0.8 0.8 0 -0.6 -0.2 0.2 0.4 0.6 -0.40 -0.8 0.2 0.6 -0.4 -0.2 0 0.4 0.8 -0.6 $\cos \theta_v$ cosθ_v

Conclusions from previous experiment

- Received statistics are not enough.
- It needs make new experiment with compacter geometry.

New experiment

- 10 long (1 m) plastic scintillator detectors with 2 PMT made by EPIC CRYSTALL
- Detectors are placed at angles from 15° with step 30° (max 135°)
- 2 long detectors above and below of target

New experimental setup

New experimental setup for studying (n', γ) -correlations

Вид сбоку

Measurements of detectors' characteristics

Long scintillation detectors Epic CRYSTAL

Calibration of detectors

Length resolution – 23,7 cm

Data processing

TOF

Formula of (n', γ) -correlations

together with Barabanov A.L.

Differential probability of gamma-quanta emission dependence on inelastic scattered neutron direction

Comparison (n', γ) - correlations with other data

 $\theta_{n\prime} = 45^{\circ}$

Comparison with theoretical calculations

Comparison of experimental angular distribution with theoretical calculations

Angular distribution of inelastic scattered neutron from En = 4,44MeV

Work	a ₂	a_4
Theory	0,26	-0, 30
Bystritsky	$\textbf{0,34}\pm\textbf{0,02}$	$-0,33 \pm -0,02$
Anderson	$\textbf{0,29}\pm\textbf{0,02}$	$-0,28\pm0,02$
Benvensite	$\textbf{0,37}\pm\textbf{0,05}$	$-0,39\pm0,07$
Spaargaren	$\textbf{0,39} \pm \textbf{0,01}$	$-0,37\pm0,01$

Plans

Use of spatial resolution of detectors.

To calculate errors of angles.

To calculate differential cross-section of (n, γ) -correlations.

To find correct parameters for calculation of reaction by TALYS program.

Make correct comparison of our experimental data with other experiments and theoretical approach.

Thank you for your attention!

Literature

B.A. Benetskii, I.M. Frank. Angular correlation between gamma rays and 14-MeV neutrons scattered inelastically by carbon. Soviet Physics JETP, vol. 17, n. 2 (1963) p. 309

E. Sheldon. Rev. Mod. Phys. 1963. V.35 P. 795.

A.B. Clegg and G.R. Satchler. Nucl. Phys. 1961. V. 27. P. 431.

N.A. Fedorov. **Studying of 14.1 MeV neutrons scattering on light nuclei. Master thesis.** MSU, Moscow, 2017.

J. Zamudio, L. Romero, R. Morales. Nuclear Physics. 1967. V. A96. P. 449.

Kelly, K. J., Devlin, M., O'Donnell, J. M., & Bennett, E. A. (2021). Correlated n– γ angular distributions from the Q=4.4398 MeV C12(n,n' γ) reaction for incident neutron energies from 6.5 MeV to 16.5 MeV. *Physical Review. C*, 104(6).

How to choose angles? 1 z ' 16×16 = 256 pixels 16 strips Dy δ Plane of reaction A h Ŵ, Top view of beams nX04 1000 5 Pb 500 10 -500 64 Dist 1109.3 2 Dist 1088 ; -1000 nD10 ∠ 5.05 Dist 1050.9 -1000 0 500 1000 Distance from Target zAxis (mm) -50017

Comparison with theoretical calculations

