

Measurements of the ⁶Li(n,α)³H reaction in the neutron energy range E_n=3.3-5.1 MeV.

Igor Chuprakov^{1,5}, PhD, FLNP JINR

Yu. M. Gledenov¹, E. Sansarbayar ^{1,3}, L. Krupa², G. Khuukhenkhuu³, Zhang Guohui⁴, Liu Jie⁴, Xia Cong⁴, Bai Haofan⁴, Wu Zepeng⁴, Ren Wenkai⁴

¹Frank Laboratory of Neutron Physics, JINR, Dubna, Russia
²Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia
³Nuclear Research Centre, National University of Mongolia, Ulaanbaatar, Mongolia
⁴State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, Peking University, Beijing, China
⁵The Institute of Nuclear Physics, Ministry of Energy of the Republic of Kazakhstan, Almaty, Kazakhstan

Studies of neutron reactions with charged particle emission is important for:

Nuclear physics: understanding the structure of atomic nuclei and the mechanisms of nuclear reactions.

Astrophysics: refining the parameters of the optical potential used in astrophysical calculations.

Reactor technology: assessing radiation damage caused by the accumulation of hydrogen and helium in structural materials.

The reaction cross section ${}^{6}Li(n,\alpha){}^{3}H$:

- Used for tritium production.
- Used for neutron flux monitoring.
- Serves as a standard for neutron cross section from thermal energy to 100 keV due to its large Q-value, large thermal cross section of 940 barns, and 1/v energy dependence below 10 keV.

However, there are significant discrepancies in both experimental and evaluated data in the neutron energy range of several MeV.

MOTIVATION

EXPERIMENTAL SETUP

Neutron source

- D(d,n)³He reaction
- Gas pressure 2-2.5 atm.
- Current– 2-3 μA
- F_n~6,5x10⁵(n/sm²*sec);
- E_d = 1.8-2.6MeV.
- E_n=3.3–5.1 МэВ

IC parameters with grid:

- Forward-backward: ~ 4π
- Working gas: Kr + 4% CH₄
- Gas pressure: 0,7-4 atm.

Neutron monitors

- A fission chamber and a long ³He counter were used as neutron flux monitors
- The absolute neutron flux was determined from the registration of ²³⁸U fission fragments,
- The Ej309 scintillation detector was used to measure the neutron spectrum.

Experimental scheme

EXPERIMENTAL SETUP

Positions of samples on the cathode and their characteristics

Sample position	Sample (2 side)	Thickness (mg/cm2)	Sample (1 side)	Thickness (mg/cm2)
No.1	α - source	-	α – source	-
No.2	²³⁸ U ₃ O ₈		Al	-
No.3	⁶ LiF#I	272,9	⁶ LiF#II	233,5
No.4	⁶ LiF#III	105,3	⁶ LiF#IV	46
No.5	Та	-	Та	-

Schematic diagram of the ionization chamber with electronics

Several series of measurements were carried out:

- 1) Measurement №1 P=1.0 atm, sample №2
- 2) Measurement №2 P=1.0 atm, sample №3
- 3) Measurement №3 P=4.0 atm, sample №2
- 4) Measurement №4 P=4.0 atm, sample №3

In each series, measurements were carried out at 5-7 values of En in the range of 3.3-5.1 MeV in the following order:

- a) calibration of IC using α -sources 10 minutes;
- b) measurement with a lithium sample 2 hours;
- c) background measurement with a clean Ta substrate 2 hours;
- d) measurement with a ²³⁸U sample on the IC cathode for flux measurement 1 hour.

PRELIMINARY DATA

Simulation of measurements of the reaction cross section of $^{6}Li(n,\alpha)^{3}H$ and $^{6}Li(n,t)$

Anode-cathode 2D spectra for a sample of 105 μ g/cm², E_n=4.8 MeV, P=1.3 (left) and 4.0 atm. (on right)

PRELIMINARY DATA

Experimental anode-cathode 2D spectra from measurements, sample thickness 233.5 μ g/cm², pressure P = 1.0 (left) and 4.0 atm. , E_n=4.5 MeV

wh

PRELIMINARY DATA

The cross section for the ⁶Li(n,α)³H reaction for the "forward" and "backward" directions was calculated using the formula:

$$\sigma_{n,\alpha} = \sigma_{n,f} \cdot \frac{N_{\alpha}}{N_{f}} \frac{\varepsilon_{f}}{\varepsilon_{\alpha}} \frac{N_{238U}}{N_{sample}} \cdot K$$

ere $K = \frac{N_{fFC}}{N_{fIC}}$

 N_{fFC} and N_{fIC} - readings from the fission chamber and IC when measuring the reactions ²³⁸U(n, f), and ⁶Li(n, α)³H, respectively;

 $\sigma_{n,f}$ - standard cross section ²³⁸U (n, f) from ENDF/B-VIII.0;

 N_{α} and N_{f} are the number of events from α particles from the reaction ⁶Li(n, α)³H and fission fragments from ²³⁸U (n, f), respectively;

 $N_{\rm 238U}$ and $N_{\rm sample}$ are the number of atoms in the samples, respectively. $_{\rm 16.04.2024}$

PRELIMINARY DATA

The presented cross sections for the reaction ${}^{6}Li(n,\alpha){}^{3}H$ are compared with existing measurements and estimates

- At the EG-5 accelerator FLNP JINR, a charged particle spectrometer with all the necessary equipment was set up.
- \succ Simulation of measurements using various working gases (Kr, CH₄, CO₂) was carried out.
- Made targets (samples) ²³⁸U (99.999) with a thickness of ~ 0.5 mg/cm², ⁶LiF (90.5%) of various thicknesses from 50 to 300 μg/cm²;
- Measurements of the reaction ⁶Li(n,α)³H at E_n=3.3; 3.9; 4.3; 4.5; 4.8; and 5.1 MeV were carried out at EG-5 FLNP JINR. The data we obtained was compared with those available in EXFOR and data libraries.

Thank you for your attention.