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Nuclear level densities for 56,57Fe have been extracted from the primary
γ-ray spectra using (3He,3He′γ) and (3He,αγ) reactions. Nuclear ther-
modynamic properties for 56Fe and 57Fe are investigated using the exper-
imental level densities. These properties include entropy S, Helmholtz
free energy F, caloric curves (i.e., the E-T relation), chemical potential
μ, and heat capacity CV .

I. INTRODUCTION

Nuclear thermodynamics has attracted considerable attention in recent years. Several
temperature-dependent nuclear properties such as nuclear shapes and giant dipole reso-
nance widths (and their fluctuation properties) have been investigated in the literature
[1]. In this context one of the most interesting topics is that of phase transitions in atomic
nuclei. One type of phase transition in atomic nuclei is the transition from a phase with
strong pairing correlations to a phase with weak pairing correlations [2]. The onset of a
discontinuity in thermodynamic variables and the evolution of zeros of the canonical and
grand-canonical partition functions [3] in the complex plane have been discussed in terms
of pairing transitions. Recently it has been shown using the static-path approximation
(SPA) plus random-phase approximation (RPA) that the increase of moment of inertia
with increasing temperature is correlated with the suppression of pairing correlations [4].

As a part of an ongoing effort, in the present work we extract several thermodynamic
properties of 56Fe and 57Fe isotopes starting from nuclear level densities. The plan of
this paper is as follows: The experiment, analysis tools, and the Oslo method are briefly
presented in the next Section. Experimental level densities are given in Section III.
Thermodynamical concepts are discussed in Section IV. Concluding remarks are given in
Section V.

II. EXPERIMENTAL DETAILS AND DATA ANALYSIS

The self-supporting 57Fe target was bombarded by a 2-nA beam of 45-MeV 3He par-
ticles from the Oslo Cyclotron Laboratory at the University of Oslo. The target was



isotopically enriched to 94.7%, and had a thickness of 3.4 mg/cm2. The outgoing charged
particles were recorded by eight Si �E-E telescopes, which were collimated and placed 5
cm away from the target at a ring 45◦ with respect to the beam direction. The particle
telescopes covered 0.3% of the total solid angle. The thicknesses of the front and the end
detectors were 140 and 3000μm, respectively, and the particle energy resolution was ≈
0.3 MeV over the entire spectrum. The reaction γ rays were detected by 28 collimated
5′′ x 5′′ NaI(Tl) detectors with a total efficiency of ≈ 15% of 4π, and with 6% energy
resolution at 1.3 MeV. In order to monitor the selectivity and populated spin distribution
of the reactions, one 60% Ge(HP) detector was used. After an analysis procedure which
is described in Ref. [5], a two-dimensional primary γ-ray matrix is extracted.

The primary γ-ray matrix is factorized using the Brink-Axel hypothesis [6, 7], according
to which the probability of emitting a γ ray from an excited state is proportional to the γ-
ray transmission coefficient T (Eγ) and the level density at the final energy ρ(E−Eγ). This
factorization is determined by a least χ2 method without assuming any functional form
for the level density and the γ-ray transmission coefficient [8]. However, this method does
not provide a unique solution. This factorization is invariant under the transformation [8]

ρ̃(E − Eγ) = A exp(α(E − Eγ))ρ(E − Eγ)

T̃ (Eγ) = B exp(αEγ)T (Eγ), (1)

where A, B, and α are the free parameters of the transformation. Therefore it is very
important to determine accurately the free parameters A, B, and α in order to find the
physical solution. The parameters A and α are determined from the normalization of
the level density to the discrete levels at low excitation energies and to the density of
the neutron resonances at the neutron binding energy Bn. The parameter B is then
determined using the average total radiative width of neutron resonances. Details of the
normalization procedure are explained elsewhere [9].

III. NUCLEAR LEVEL DENSITIES

The normalized experimental level densities for 56,57Fe using the Oslo method were
reported earlier [10]. In the present paper, we investigate the thermodynamics of 56,57Fe
using the experimental level densities obtained from the Oslo method. However, before
extracting the thermodynamic properties, we decided to re-normalize our experimental
level densities. The reason for this renormalization is that during the past few years more
data on the level densities of 56,57Fe were obtained. Each of these data sets employed a
different reaction: (i) The level density of 56Fe was obtained from neutron evaporation
spectra using the 55Mn(d,n)56Fe reaction [11]. (ii) The level density of 57Fe was measured
with both the 58Fe(3He,α)57Fe and 59Co(d, α)57Fe reactions recently [12]. Furthermore,
new descriptions of the level density parameter a and backshift energy parameter E1

suggested by von Egidy and Bucurescu [13] take into account shell corrections in the
mass formula. Combining these recent experimental data with the new descriptions for
the level density parameters provides a more reliable means for the normalization of the
experimental level densities.

Figure 1 shows re-normalized level densities of 56,57Fe from the ground state up to Ex ∼
Bn −1 MeV. The level density of 56Fe obtained from the neutron evaporation data is also



shown. The agreement between the two methods is good. Individual levels are prominent
in the 56Fe data at Ex = 847 and 2084 keV excitation energies, these correspond to the
first and the second excited states in 56Fe. At around 2.6 MeV excitation energy for 56Fe
the increase in the level density data is interpreted as the first breaking of nucleon pairs.
Similarly, the strong increase in the level density data of 57Fe at Ex ∼ 1.8 MeV that
terminates Ex ∼ 2.8 MeV reveals the first breaking of Cooper pairs in the underlying
even-even core. These obvious anomalies in the level density data also appear in the
thermodynamic quantities of the 56,57Fe isotopes.

(a) (b)

FIG. 1: (a) Experimental level density of 56Fe (full circles). The level density obtained
from the 55Mn(d,n)56Fe reaction [11] is also shown (as open circles). The jagged solid
lines represent the level density obtained from counting of discrete levels [14]. The smooth
solid curve is the renormalized level density parametrization according to von Egidy and
Bucurescu [13]. The data points between the arrows at low and high excitations are used
for the normalization. (b) Experimental level density of 57Fe (full circles). The level
density obtained from the 58Fe(3He,α)57Fe reaction [12] is also shown as a triangle at Bn.

IV. THERMODYNAMIC QUANTITIES

A Microcanonical Ensemble

The microcanonical ensemble is commonly accepted as an appropriate ensemble to use
in investigating atomic nuclei, as the nuclear force has a short range and the nucleus
does not share its excitation energy with its surroundings. The microcanonical entropy
is closely related to the level density of the system at a given excitation energy. Several
thermodynamic properties of the atomic nucleus can be derived from the entropy. The
entropy is defined as the natural logarithm of the multiplicity Ω of accessible states within
the energy interval E and E + δE:



S(E) = kB ln Ω(E) (2)

where kB is the Boltzmann’s constant. Here we set kB to unity so that the entropy
becomes dimensionless and thus the temperature T has the units of MeV.

However, one should note that the experimental level density is not the true multiplicity
of states; i.e., it does not include (2I + 1) degeneracy of magnetic substates. In order to
obtain the state density, one needs to know the spin distribution as a function of excitation
energy in order that multiplication of the spin dependent factor (2〈I(E)〉+1) and the level
density gives the state density. The spin distribution is usually assumed to be Gaussian
with a mean of 〈2I + 1〉 =

√
2πσ where σ is the spin cut-off parameter which depends

very weakly (σ ∝ E1/4) on excitation energy:

ρ(E, I) = ρ(E)
2I + 1

2σ2
exp[−I(I + 1)/2σ2] (3)

where ρ(E, I) is the level density for a given spin I. Thus the total level density (summed
over all spins) is given by ρ(E) =

∑
I ρ(E, I) and the total state density is given by

W (E) =
∑

I(2I + 1)ρ(E, I). The multiplicity of states could be obtained by simply
multiplying a factor 〈2I + 1〉 =

√
2πσ to the level density. There is little experimental

data on the spin cut-off parameter. Theoretical calculations of the spin distribution of
nuclear levels are difficult if correlations are assumed between individual spins.

Here we define a “pseudo” entropy based on the experimental level density, i.e., Ω(E) =
ρ(E)/ρ0. The normalization constant ρ0 is introduced and adjusted to the value ρ0 = 1
MeV−1 such that the third law of thermodynamics is fulfilled as S(T → 0) = 0.

Figure 2 shows the entropies of 56,57Fe. The breaking of the first nucleon pair in the
odd-mass system appears at a lower excitation energy than for the even system due to the
reduced pairing gap Δ, which results from the odd valence neutron in the 57Fe nucleus.

The entropies of 56,57Fe appear fairly linear at high excitation energies. The slope of
the entropy in the microcanonical ensemble is related to the temperature of the system by
T = (dS/dEx)−1

V . The entropies of 56,57Fe are fitted with a constant temperature model,
shown as solid lines in Fig. 2. From this model, constant temperatures of T = 1.50 MeV
and T = 1.19 MeV are obtained for 56Fe and 57Fe, respectively. These temperatures are
interpreted as the critical temperatures Tc for the breaking of nucleon pairs.

The entropy difference between the even-odd and even-even nuclei is interpreted as
the entropy of a single quasiparticle (particle or hole), assuming that the entropy is an
extensive (additive) quantity. The entropy carried by the valence neutron particle in our
case can be estimated by ΔS = S(57Fe) − S(56Fe). The lower panel of Fig. 2 shows
the single particle entropy as a function of excitation energy. The fluctuations at low
excitation energies result from the lower pairing gap in the odd-mass system. At higher
excitation energies above ∼ 4 MeV, the entropy difference has a nearly constant value of
ΔS = 0.82kB. This value is less than the value obtained for the rare-earth isotopes which
is ΔS = 1.7kB [15]. This is expected because 56Fe and 57Fe isotopes are in the vicinity of
closed shells, and thus the entropy is less than that of the rare-earth isotopes.

Assuming a constant ΔS and a constant energy shift Δ between the two entropies,
these two quantities are connected to the critical temperature Tc [15] by Tc = Δ/ΔS. From
this relation, we can calculate the entropy difference ΔS = Δ/Tc = 1.3/1.35 ∼ 0.96kB

which is consistent with the present observations. Here the pairing gap parameter Δ is
calculated using the three mass indicator of Dobaczewski et al. [16], and an average value



FIG. 2: Deduced entropies for 56,57Fe (upper panel). The solid line is the constant tem-
perature least square fit to the data. Lower panel: Deduced entropy excess for the single
particle. The entropy excess ΔS = 0.82kB.

is taken for the critical temperature.

B Canonical Ensemble

The partition function in the canonical ensemble for a given temperature is determined
by

Z(T ) =
∞∑

E=0

ρ(E)δEe−E/T , (4)

where ρ(E) is the measured level density, and δE is the energy bin used. The summation
in Z(T ) goes to infinity and our level densities extend to ∼ Bn − 1 MeV. Therefore we
extrapolate the experimental level densities using the BSFG model parametrized by von
Egidy and Bucurescu [13]. The Helmholtz free energy can be calculated from the partition
function by

F (T ) = −T ln Z(T ). (5)

The entropy S, the average excitation energy 〈E〉, the heat capacity capacity CV , and
the chemical potential μ at a given temperature can be derived from F (T ) by



FIG. 3: The Helmholtz free energy F , average excitation energy 〈E(T )〉, entropy S, and
heat capacity CV for 56Fe (dashed lines) and 57Fe (solid lines), deduced in the canonical
ensemble.

S(T ) = −
(

∂F

∂T

)
V

, (6)

〈E(T )〉 = F + TS, (7)

CV (T ) =

(
∂〈E〉
∂T

)
V

, (8)

μ(T ) =
∂F

∂n
, (9)

where n is the number of thermal particles. These thermal particles outside a core of
Cooper pairs are responsible for the thermal properties of the nucleus at low excitations.
At higher temperatures, pairing correlations are quenched, and the nucleus has a transition
from a paired to unpaired phase.

Figure 3 shows the Helmholtz free energy F , average excitation energy 〈E(T )〉, entropy
S, and heat capacity CV for 56Fe (dashed lines) and 57Fe (solid lines). The Helmholtz
free energy F and the average excitation energy 〈E(T )〉 behave smoothly as a function of



FIG. 4: The experimental Helmholtz free energies deduced in the canonical ensemble
for 56Fe and 57Fe. The critical temperature for the quenching of pairing correlations lies
between Tc ==1 - 1.5 MeV, where the chemical potential is μ ∼ 0.

temperature. At around T ∼ 1.3 MeV, both isotopes are excited to energies comparable
to their respective neutron binding energies. The average excitation energies for 56Fe and
57Fe coincide only at one point T ∼ 2 MeV. Above this temperature the odd isotope has
larger values as the temperature increases. The entropy S and heat capacity CV are the
first and second derivatives of F , respectively, and thus both reflect thermal variations.
For temperatures below T =1 MeV, the entropy difference for 56Fe and 57Fe reaches ∼ 2,
the entropy of 57Fe being larger. The entropies have the same values between T =1 and
1.5 MeV. Above T =1.5 MeV, the two entropies start to diverge. Both heat capacities
have an S shape which is interpreted as a fingerprint for pairing transitions in nuclei.
The structure in the heat capacity CV for 57Fe is more pronounced than CV for 56Fe.
The contribution to the heat capacity from collective excitations is negligible, and has no
influence on the S shape [17].

Figure 4 shows the chemical potential μ which is defined as the amount of energy
required to excite a nucleon from the underlying core of paired nucleons, while the entropy
and volume held fixed. The typical energy cost for creating a quasiparticle is −Δ which
is also equal to the chemical potential. The chemical potential can be written as

μ =
ΔF

ΔN
=

Fodd − Feven

1
= −Δ. (10)

thus giving Feven = Fodd + Δ. The energy curve of 57Fe can be interpreted as the free
energy for an even-even system with one extra nucleon.



V. SUMMARY AND CONCLUSIONS

Nuclear level densities for 56,57Fe are renormalized using the new level density
parametrization suggested by von Egidy and Bucurescu. The level densities obtained
with the Oslo method agree well with those obtained from other experiments. The ex-
perimental level densities are used to extract thermodynamic quantities. The entropies
for 56,57Fe obtained in the microcanonical ensemble reveal step structures indicating the
breaking of nucleon Cooper pairs. The entropy carried by the single neutron is estimated
to be ΔS = 0.82kB which is smaller than that of the rare-earth isotopes. Assuming a
constant ΔS, a critical temperature for the depairing process was determined. In the
canonical ensemble, several thermodynamical properties were also investigated.
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