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Abstract

The Laue diffraction on (220) plane of large (∼ 200 mm) silicon crystal was investigated for
the Bragg angles close to π/2. It was demonstrated that the effective neutron absorption
length for the low-absorbed Bloch wave can reach about 3 m instead of 40 cm for the
non-diffracted neutrons. Therefore, we saw reasonable reflected neutron beam intensity for
the Bragg angles about 880 and it was possible to observe specific dynamical diffraction
effects for Laue neutron diffraction with such Bragg angles in the extremely thick crystal.
Experimental results are in good agreement with theoretical predictions for both one-crystal
scheme and for two-crystal scheme of setup.

Introduction

The crystal-diffraction experiment to test weak equivalence principle for the neutron was recently
proposed [1, 2]. It is based on the essential magnification of external affect on the neutron
diffracting under Laue for the Bragg angles close to the right one. Recently we observed an
additional enhancement factor of small effects exerting influence on a neutron undergoing Laue
diffraction at such Bragg angles [3]. This factor arises due to the time of diffracted neutron delay
inside the crystal and is proportional to tan2(θB). Its value can reach 103. In the aggregate with
diffraction enhancement factor, which is also known as decreasing of diffracting neutron effective
mass [4], the total diffraction enhancement factor may be as large as 109. So, it becomes
interesting to try to utilize this enhancment phenomenon for investigation of external affects
acting on a diffracting neutron.

In the experiment we were working with two-crystal scheme of Laue diffraction in large �150×
220 mm3 silicon crystal. The working crystalographic plane is (220). Experimental setup is based
on direct neutron beam collimation with system of slits which allows us to observe neutron beam
shift on the exit surface of the crystal. In this consideration specific dynamical diffraction effects
become very significant. First of all, effect of anomalous transmission or Borrmann effect [5]
should be taken into account. This effect gives different absorption lengths for different types of
Bloch waves excited in crystal (in fact for low-absorbed wave absorption length is by one order
of magnitude higher than for non-diffracted neutrons). Borrmann effect was investigated for
x-rays more than fifty years ago and its detailed description can be found in [5]. Theoretical
consideration of this effect for neutrons can be found in [6] and also in [7, 8].

1. Neutron Laue diffraction in perfect crystals

Here we consider the symmetrical Laue diffraction scheme in a transparent crystal with the system
of crystallographic planes described by the reciprocal lattice vector g normal to the planes (see
Fig. 1), g = 2π/d, d is the interplanar distance. In this case, the neutron wave function in a
crystal will be a superposition of Bloch waves

ψj (r) = aj (r) e(ikjr). (1)



In two-beam approximation (1) becomes a superposition of two Bloch waves ψ(1) and ψ(2)

corresponding to two branches of the dispersion surface [6]

ψ1,2 = ψ1,2
0 + ψ1,2

g , (2)

where ψ0 – is the wave function of direct beam and ψg – is the wave function of reflected beam.
In the plane wave approximation neutron currents directions (Fig. 1) in crystal can be defined
for each Bloch wave field separately and, neglecting the fast oscillating interference terms, are
given by

j1,2 =
h̄|k|
m

(
n0

∣∣∣ψ1,2
0

∣∣∣2 + ng

∣∣∣ψ1,2
g

∣∣∣2) , (3)

where n0 and ng – are the unit wave vectors corresponded to direct and reflected directions.
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Figure 1: Laue diffraction in single crystal. j1 and j2 – directions of neutron currents.

Neutron currents in crystal are bounded by the size of so-called ”Borrmann fan”. It’s conve-
nient to describe distribution of ”Borrmann fan” by using the parameter of deviation from exact
Bragg condition

Γ =
tg (θ)

tg (θB)
=

x

2Ltg (θB)
. (4)

Under this term ”Borrmann fan” lies between −1 < Γ < 1. One can also describe the wave
amplitudes inside the crystals by the terms of Γ. They are given by the following expressions:

a1,2
0 (Γ) =

1− Γ

2 (1 + Γ)
√

1− Γ2
, (5)

a1,2
g (Γ) =

1

2
√

1− Γ2
. (6)



Finally without taking interference effects into account one obtains the intensity profile on the
exit surface of crystal [6]

R0,g (Γ) = [(a1,2
0 (Γ))2 + (a1,2

g (Γ))2]
1

(1− Γ2)
√

1− Γ2
. (7)

The intensity profile (7) shows increase of the intensity on the margins of the ”Borrmann fan”
(when |Γ| → 1). This effect in neutron diffraction was first observed in [9] and explained in [10].

2. Influence of absorption

For the case of non zero absorption the amplitudes of diffracted in Bragg direction waves are
given by [6]:

a1,2
g (Γ) = e

−Σ0Leff
√

2(1−Γ2)1/4×

×
(
sin2

(
A√

1−Γ2

)
+ sinh2

(
ΣgLeff

√
1− Γ2

))1/2
,

(8)

where Σ0 = 1
V

∑
i
σI
i and Σg = 1

V

∑
i

exp (−igri)σ
I
i – zero and g-harmonic of absorption (σI

i – is

total cross-section of absorption and incoherent scattering); Leff = L/ cos θB – effective crystal
length; A = (πL)/ξg, where ξg – is so called extinction length which describes the period of
”Pendellosung” oscillations [6].

With increasing of crystal length and consequently the (πL)/ξg value one can average the
amplitudes over ”Pendellosung” oscillation period. Therefore (8) can be simplified:

a1,2
g (Γ) =

e−Σ0Leff

2(1− Γ2)1/4

(
± cosh 2

(
ΣgLeff

√
1− Γ2

))
. (9)

In case of diffraction in thick crystal when ΣgLeff >> 1 what gives us exp(−ΣgLeff ) << 1,
the amplitudes (9) become:

a1,2
g (Γ) =

exp
(
−Leff

(
Σ0 ± Σ~g

√
1− Γ2

))
4(1− Γ2)1/4

. (10)

The amplitudes value for transmitted wave can be obtained similar to (10)

a1,2
0 (Γ) =

exp
(
−Leff

(
Σ0 ± Σg

√
1− Γ2

))
4(1− Γ2)1/4

√
1− Γ

1 + Γ
. (11)

The intensity profile at the exit surface of the crystal after averaging over interference term
will be:

R0 = (a1
0)

2
+ (a2

0)
2
,

Rg =
(
a1
g

)2
+
(
a2
g

)2
.

(12)

From equations (10, 11) one can see that for the second type of two Bloch waves (ψ1
0,g, ψ

2
0,g)

absorption will be much more weaker than for the first one. In fact this is the direct consequence
of anomalous transmission or Borrmann effect. This effect gives an opportunity for the diffracting
neutrons to pass through extremely large (we worked with 220 mm of silicon) crystals without
considerable losses of intensity.



3. Experimental observation of Borrmann effect

Experimental studies were done at WWR-M research reactor (PNPI, Gatchina). Neutron Laue
diffraction with Bragg angles close to π/2 was investigated both for one-crystal (Fig. 1) and for
two-crystal (Fig. 2) schemes on (220) crystallographic planes of large (�150× 220 mm3) silicon
crystal with interplanar distance d = 1, 92·10−8 cm. Silicon crystal was mounted in thermostat for
minimization of thermal deformation effect in crystalline medium. The necessary high collimation
of the neutron beam was provided by the first crystal with slits placed on entrance and exit faces.
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Figure 2: Two-crystal scheme of Laue diffraction. Collimating slits are mounted at the
entrance and exit surfaces of the crystal. j1 and j2 – directions of neutron currents in the
first crystal; ji,j (i, j = 1, 2) – directions of neutron currents in the second crystal.

In the experiment we took the intensity dependences for one- and two-crystal schemes of
Laue diffraction on a Bragg angle value (Fig. 3). Bragg angle value reached 880. On the Fig. 3
one can also see effective crystal length value Leff = L/ cos θB that reaches 6 meteres for 880.
Theoretical calculations were made for silicon absorption length Labs = 40 cm. The g-harmonic
of the linear absorption coefficient can be presented by the following formula

Σg = Σ0 (1− δg) (13)

where δg – is a free parameter. The best agreement with experiment had been obtained for
δg = 0, 012. In this case the linear absorption coefficient value for the first Bloch wave type is

Σ1 = Σ0(2− δg) = 0, 05 cm−1,

and for the second Bloch wave type is

Σ2 = Σ0δg = 0, 003 cm−1.
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Figure 3: Intensity dependence on a Bragg angle value for one- and two-crystal schemes of
the setup for silicon crystal. Crystallographic plane (220). Crystal thickness L = 220 mm.
Dots stand for the experimental data and lines for theoretical predictions.

For the two-crystal scheme of Laue diffraction the intensity profile for tramsmitted beam
(Fig. 2) can be derived from

R0 = 1
2
R0 (L/2)R0 (L/2) = ...

... = 1
2

[
(a1

0 (L/2))
2

+ (a2
0 (L/2))

2
]2
.

(14)

Dependence of intensities values ratio on a Bragg angle for one- and two-crystal schemes is
shown on the Fig. 4. Taking diffraction focusing [11] and Borrmann effects into account theory
predicts increasing of intensity for the two-crystal scheme in comparison with one-crystal scheme
when diffraction is going with normal Bragg angles. But when Bragg angles are tending to π/2
the intensity in two-crystal scheme becomes lower than for one-crystal scheme. This fact coincides
with our experimental setup geometry and also corroborates results of plane wave approximation
for Laue diffraction case.
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Figure 4: Dependence of intensities values ratio on a Bragg angle for one- and two-crystal
schemes of the setup for silicon crystal. Solid line is a theoretical curve.

4. Influence of an external force on a Laue diffracting

neutron

For the neutron Laue diffraction in deformed crystals special theory was developed [10]. In this
theory effective ”Kato force” fk is imposed. This force describes diffracting neutron propagation
inside weakly deformed crystal [12]. In terms of the ”Kato force” neutron current’s behaviour in
deformed crystal is determined by the equation

∂2x

∂y2
= ± c

m0

fk(y, x), (15)

where c ≡ tan θB and m0 ≡ 2Fgd/V is the so called ”Kato mass” with Fg – the neutron structure
amplitude and V – the unit cell volume. The sign ± in equation (15) corresponds to different
Bloch waves.

In (15) the ”Kato force” depends on the spatial coordinates X and Y (see Fig. 1). It can
be easily demonstrated that putting an undeformed perfect crystal in a force field affecting the
neutron along the reciprocal lattice vector g, we will have the same result as for a deformed
crystal. So, the theory which was developed for weakly deformed crystals also works well in the
presence of any external field affecting the diffracting neutron in undeformed crystal. An external
field affecting a diffracting neutron was considered in [13].

It is also easy to show that an external force Fn acting on a neutron along vector g (X axis,
see Fig. 1) is equivalent to a gradient of interplanar distance with the value

ξf =
Fn

2En

, (16)



where En is the neutron energy.
Therefore the neutron trajectory equation (15) in the crystal in the presence of an external

field will have the form

∂2z

∂y2
= ± c2g

2m0

Fn

2En

. (17)

Let’s compare this equation for the ”Kato trajectory” with that for a usual trajectory of
a neutron under the same external field in free space. The last one is described by standard
Newtonian equation which has the form

∂2z

∂y2
=

Fn

2En

. (18)

As it follows from (17) and (18) the ”curvature” of the diffracting neutron trajectory in the
crystal is magnified by the factor

Ke = ± c2g

2m0

. (19)

This factor depends on the Bragg angle as c2 ≡ tan2 θB, so for Bragg angles θB ≈ (84−88)0

influence of deformation can be intensified by a factor ∼ 100− 1000 as compared with a Bragg
angle of ∼ 450.

The numerical calculation of the factor Ke for (220) silicon crystallographic planes gives

K(220)
e = ±0.85 · 108, (20)

for a Bragg angle θB = 870 (c=20).
Therefore, a 10 cm long crystal is equivalent to ∼ 1 km of free flight. The diffraction

enhancement of the angular deflection of a neutron trajectory inside a crystal is well known, see
for instance [14], but we have to note that such an effect can be considerably magnified by an
additional gain factor proportional to tan2 θB for Bragg angles close to π/2 [15]. The observed
effects give us a chance to build a device with unprecedented sensitivity to external force acting
on a neutron.

5. Possible application of two-crystal diffraction scheme.

mi/mG experiment with neutron

Principle scheme of the setup is based on two-crystal scheme of diffraction as it was shown in
Fig. 2. The necessary high collimation of the beam was provided by the first crystal with slits
placed on entrance and exit surfaces, for details see [14]. An external force which is parallel to
the reciprocal lattice vector curves the neutron trajectories inside the crystals. This results in a
shift of the neutron beam along the exit surface of the second crystal:

∆1
F (1, 2) = ± π c2L2

m0d En

Fn ≡ ±∆1
F , (21)

where ± corresponds to the two type of Bloch waves excited in a crystal.



After averaging over ”Pendellosung” oscillations which arise due to the interference of ψ(1)
and ψ(2) and in case of large crystal (see section 2) we get the shift of the neutron beam along
the second crystal exit surface

∆S = ∆1
F =

π c2L2

m0d En

Fn. (22)

The resolution of the external force, i.e. magnitude of force when the neutron beam shift ∆S

is equal to the slit size δs, is equal to:

FW =
m0d En

π c2L2
δs (23)

One of the applications can be connected with the measurement of inertial to gravitational
neutron mass ratio. Our Earth is moving at a stationary orbit around the Sun, it means that
the gravitational force which is proportional to the gravitational mass is in balance with the
centrifugal force which is proportional to the inertial mass. If this is not so for free neutrons, then
in the coordinate system connected with the Earth a free neutron will feel a non zero force1

Fm =
(mi −mG) ·GMS

R2
S

≈ ∆Gi · 6 · 10−4mGg (24)

where mG and mi are the neutron gravitational and inertial masses, G is the gravitational con-
stant, MS is the mass of the Sun, RS is the distance to the Sun, ∆Gi ≡ (mi −mG)/mG.
Moreover, this force will oscillate in the laboratory coordinate system with one day period due to
the Earth spinning motion, see Fig. 5.

Figure 5: Position of the setup relatively to the Sun. gc is the setup orientation.

Conclusions

The good agreement of experimental results with theoretical predictions based on specific dynam-
ical diffraction speculations was shown. With taking Borrmann effect into account absorption

1The idea of this experiment is an analogue to the well known Eõtvõs experiment for the equivalence
principle checking [16]



length for low-absorbed Bloch wave for (220) silicon plane is by one order of magnitude higher
compared to non-diffracted neutron.

Observed dynamical diffraction effects discussed in this paper give a chance to measure any
small external force acting on a neutron with unprecedented sensitivity. Preliminary estimations
and test experiments [1, 17] showed us that the possible sensitivity to external force can reach
the magnitude

σ(Fext) ∼= 10−17 eV/cm,

which provides us for instance measuring mi/mG ratio with the accuracy σ(mi/mG) ∼ 10−5 for
the available silicon crystal and cold neutron beam flux. This is more than one order of magnitude
better than the best modern result [18].
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