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Abstract. Correlations of fission products such as ROT-effect and TRI-effect are expressed as 

P-even T-odd constructions of polarization observables and linear momenta. They are nozero 

because the final state interaction (FSI) of fission products simulates T-invariance break up. In 

the fission process these effects manifest themselves in extremely complicated events. At the 

same time the (n,αγ)-process looks essentially simpler and nevertheless may offer some 

analogous properties. So it may be used as an alternative object of the T-odd correlations 

study. In the present paper the ROT-effect in (n,αγ)-reactions are investigated. The sequential 

mechanism of the process is assumed. The final state interaction of the alpha-particle with the 

residual nucleus, the resonance mixing, and the actual T-noninvariant phase shift are 

considered as possible contributors of the correlation. The problem of suitable target isotopes 

is analyzed. Analogous correlations in other neutron- and proton-induced reactions are 

discussed.  

 

INTRODUCTION 

 

The five-vector P-even T-odd (pseudo-T-noninvariant) correlation of fission products, 

which takes the form ( [ ])( )
ff ff

k k k k    , where σ is the vector of the neutron 

polarization and symbols k denote the respective linear momenta (all vectors are unit ones) – 

so called ROT-effect – are now the subject of active investigations and discussions [1–3]. In 

this process however a huge number of possible exit microchannels which differ by the 

masses of fragments, their spins, relative angular momentum etc. contribute. The emission of 

some number of various unregistered light particles attends any fission event and introduces 

distortions.  These and other properties make any correlation of fission fragments with other 

emitted particles very hard for interpretation. The (n,αγ)-process seems to be more or less 

“pure laboratory” of the same effect. The idea to consider such a reaction as a process which is 

reference one for the study of the TRI-effect in fission (the related correlation takes the form 

ff
(k [ × k ]) ) is realized in the experiment [4]. The 

10
B target is used. In the paper [5] a 

theoretical interpretation of the experimental result obtained in [4] – zero TRI-effect – is 

presented. It is shown that in arbitrary process the TRI-effect may appear either in the case of 

parity nonconservation or in the case of simultaneous tripartition of the decaying nucleus.   In 

addition the fact that a T-odd effect is not necessarily an actual T-violating one is declared in 

[5]. It is also declared (before the observation of the ROT-effect) that five-vector and higher-

rank T-odd correlations may manifest themselves in this reaction in the case that other targets 

are used.  

In the current paper possible contributors of the ROT-effect which may manifest 

themselves in the (n,αγ)-process are considered in detail. The formalism of the angular 



correlations in sequential two-step reactions suitable for description of an arbitrary correlation 

is presented. Much attention is given to the selection rules classifying T-odd effects into zero 

and nonzero ones. A scheme which may be used to search for actual T-violating effect is 

demonstrated. Suitable target isotopes are proposed. The processes induced by both thermal 

and resonance neutrons are discussed. The reactions (n,pγ), (n, γα), and (p,αγ) are also 

considered. 

 

FORMALISM OF THE ANGULAR CORRELATIONS 

 

The definitions of angular correlations are formulated in a variety of ways. The correlation 

associated with the ROT-effect is defined by the five-vector form ( [ ])( )k k k k      .  

Evidently it may be written explicitly in the form of the product of five Y-functions of the rank 

1 with the proper vector-coupling. However, much more convenient expression appears after 

the convolutions of the Y-functions depending on one and the same arguments. If in addition 

the axis of quantization is chosen to be parallel to the vector of polarization σ the explicit 

kinematic form of this correlation is the following:   
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Dynamic form of any correlation must be constituted, evidently, as a bilinear form of the 

amplitudes of an investigated process. The overall (i. e. including all possible correlations) 

and general (i. e. valid for any sequential two-step cascade of an oriented or non-oriented 

sample) expression can be presented as: 
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here the notation 2 1b b  is used; ( | 0)j m j m j     is the Clebsh-Gordan coefficient, 

3×3 tables are 9j-syumbols; ( , ')m

j I I  is the statistical tensor of a state in which spins I and I’ 

are mixed; I and I’ denote the spins of initial compound nucleus state, J   the spin of an 

intermediate one, and F – a final state; J L p I  is the amplitude of a transition; 

, ' '
i i i i

L p L p     are the angular momenta and parities of the amplitudes determining the 

multipolarities of the transitions; ( , ' ')m

j lp l p  is the m  component of the efficiency tensor 

of the rank j  which characterize the capability of a detector to register a product which 

appears in the transition described by the respective pair of the amplitudes. The sum is over all 

indexes contained in (3) besides I, J, F. A particular correlation is defined by the ranks of the 

statistical tensor j and the efficiency tensors of the detector system ,j j  .  For more details 

concerning the expression (2) and the formulas bellow see the monograph [6].  



The efficiency tensor of an alpha-detector j  can be expressed as: 
 

'ˆ̂ ˆ( , ') (1/ 4 )( '/ )( 1) ( 0 '0 | 0) ( , ).
m ml
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The efficiency tensor of the gamma-detector insensitive to the polarization takes the form: 
 

' 1ˆ̂( , ' ') (1/16 ) '( 1) ( 1 ' 1| 0)[1 '( 1) ] (0) ( , ),
m j ml
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where ( )S r  is a Stokes parameter. The parameter (0)S  signifies the polarization 

insensitivity. The residual nucleus is not registered therefore the tensor of the efficiency of 

such a “registering” '

' ( )m

j F  should be written as:  

 

'
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The general expression of the statistical tensor produced by the polarized neutron capture 

has the form:  
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where Q is the degree of the neutron polarization, 0 0' ' ,I j I I j I   the amplitudes of 

the capture, , 'I I   spins of the mixed compound state, ,k    the rank of the statistical 

tensor and the index of its component respectively, 1/ 2s   denotes neutron spin, , 'l l  and 

, 'j j  – the orbital and the total contributed angular momenta. The quantum number 
0I  is the 

spin of the initial nucleus state, ,l sk k   the tensor characteristics of free neutron motion 

component contributing to the capture. This component is called radiation parameter. In the 

case that polarized s-nucleon is captured i. e. 

' 0, ' , 0, 1, 0l sl l j j s k k k         (as it is done above the axis of quantization 

is chosen to be parallel to the vector of polarization σ) the expression (6) is reduced to the 

form: 
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The discussed correlation are characterized by the tensor ranks: 2; 2; 1j j j    . The 

Y-functions, presented in the formula (1) are involved to the expression (2) through the 

expressions of the efficiency tensors. 

The existence of the Clebsh-Gordan coefficients and the 9j-symbols in the formulas (27) 

determines the selection rules for the amplitudes of a certain correlation.  Let us consider the 



first 9j-symbol in the expression (2) taking into account that ' , 1I I I  . Obviously the 

values of both spins of the compound states must be not less than 1/2 and the spin of the 

intermediate state must be not less than 1. Further if there is no parity mixing in the initial and 

the final states of the alpha-transition then the sum of the indexes of this symbol is odd with 

the proviso that 'I I  (case 1) and even – if ' , 1I I I   (case 2).  

Let us consider these two alternatives separately. 

In the case 1 the amplitudes related to one and the same resonance may contribute. The 

above-mentioned 9j-symbol changes sign in this case under the two-line permutation. This 

coefficient is zero if the first and the second lines are equivalent. Thus the interference of two 

amplitudes of the alpha-transfers with different multipolarities is in this case one of the 

necessary conditions of the effect. Bilinear combination of these amplitudes in the sum (2) 

contains the complex conjugated terms. Due to the change of sign of the 9j-symbol under the 

transposition 'L L   the imaginary part of this combination is survived only. As a result    

the dependence of the correlation formula on the amplitudes of -transition takes the form: 
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where tw  denotes the actual T-noninvariant alpha-transition amplitude which is involved in 

the formula for generality. The value 1 2      is the difference of phase shifts of two 

amplitudes. For one-resonance case if the time-reversal invariance is assumed it is this 

difference simulates pseudo-T-noninvariant effect.  This is the second necessary condition of 

its existence.  

Usually correlations are considered in another form being normalized by the respective 

cross section. In that case the additional dependence on the amplitudes turns out to be 

involved in the denominator: 
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The asymptotics of the diverging wave of a charged particle is written as: 
 

   , , ~ exp( [ ln 2 / 2 ]);l l lG kr iF kr i kr kr l                         (10) 
 

where 
2

1 2 /(2 )Z Z c E    is the Coulomb parameter. As a result the difference of 

phase shifts has the form:   
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where min{ , ' }; max{ , ' }L L L L L L      . In the typical case that 2L  the 

formula looks very simple: 
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  The widths contained in the correlation formula can be expressed more or less accurately 

[7] as ( / ) .S P     

Thus all values involved into the formula of the correlation are known except the 

spectroscopic factors S . The idea to calculate the alpha-particle spectroscopic factor of a 

neutron resonance in a certain theoretical approach looks hopeless because the components of 

the wave function of any resonance are legion. Nevertheless there is another way. For the most 

part analyzing the penetrability P one may believe that one of two amplitudes is dominating. 

In that case only the ratio of these two amplitudes is the value of interest. This value may be in 

some cases a subject of the independent study. Using (n,αγ)-reaction induced by the 

unpolarized neutron beam one can measure the eight-vector correlation which may be roughly 

denoted as 
4( ) k k . This notation is not adequate enough because being written explicitly 

in the form of the product of eight Y-functions of the rank 1 it includes the scalar products of 

the k - and k -dependent tensors of the ranks 0, 2, and 4 while only the last product is the 

proper correlation by definition. More precisely this correlation can be expressed through the 

components of irreducible tensors 4 ( , )mY    and 4 ( , )mY   
 in the kinematic form: 
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The dynamic form of this correlation is defined by the formula (2). The special feature of it 

is the ranks of the measured tensors: 4j j    and j=0. If the dominating amplitude is 

related to the angular momentum 2L  then the eight-vector correlation appears due to the 

minor amplitude only and the ratio 
1/ 2[ ( ` ) ( )]L L    determines the normalized 

4( ) k k  correlation. Thus this ratio turns out to be measurable. 

If the ratio of the amplitudes is known it is possible to calculate the coefficient of the 

correlation( [ ])( )k k k k       using the formalism presented above and after that to 

measure the ROT-effect. A discrepancy between the experimental and calculated results if it 

took place would be an evidence of the T-noninvariant effect. So it is possible in principle to 

estimate an upper limit of the actual T-noninvariant phase shift after the discussed 

measurements and calculations.   

Let us consider now the case 2. In the monograph [8] it is pointed out that overlapping of 

resonances of different spin may be an origin of T-odd correlation. The TRI-effect is 

discussed. In the case of the ROT-effect, the correlation changes sign due to the permutation 

property of the 9j-symbol in (7). Therefore only the imaginary part of this combination is the 

contributor to the correlation. However the interference of the alpha-emission amplitudes with 

one and the same angular momentum may contribute in this instance.  So   the dependence of 

the correlation formula on the amplitudes of alpha-transitions takes the form: 
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                         (15) 
 

and the imaginary part appears in (15) in the case that the actual T-invariance break up 

displays itself in the neutron and/or alpha amplitudes. Here  
iE  is the energy and 

{ ), ( ),n

i i tot iL

    are the neutron, alpha and total widths of the related resonance. The 

energy dependence of the formula (14), which is in fact 
3E
, result in a strong suppression of 

the effect. That is why one may expect very small effect in the most part of examples. 

However, an interesting exclusion appears. In the neighbourhood of the resonance point the 

discussed value has the form: 
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in the case that one disregards the small values of the widths squared.  In other words the 

discussed effect is proportional to the resonance cross section. Thus the sole suppressing 

factor involved in the expression of the effect is 
(1) 1/( )totA E E  . Unfortunately the 

actual T-noninvariant effect is extremely small in this point. 

Presented energy dependence make this mechanism strongly deferent from the one related 

to the case 1. Obviously this mechanism is the subject of the resonance neutron investigations. 

Perhaps even more promising looks the study of the proton resonances. Indeed, typical values 

of the coefficient A for the observed resonances in 
32

S nucleus are larger than the ones typical 

for neutron resonance spectra.  

The multi-resonance problem should be mentioned for completeness. If several resonances 

contribute significantly to the correlation then all quantum numbers characterizing the 

amplitudes should be indexed by the resonances numbers, the sum over these indexes appears. 

The respective resonance amplitudes should be involved in the formalism. We do not present 

such a cumbersome formalism because summing over the resonance numbers does not bring a 

qualitative novel to the picture of the process.   

 

PERFORMED EXPERIMENT AND PROMISSING EXAMPLES 

 

The capabilities of experimental tools in the studies under discussion may be estimated due 

to the experiment devoted to the measurement of TRI-correlation which has been carried out 

yet [6]. The following reaction was used:  

 
10 6B(n, ) Li (E 478 keV).   

 



The upper limit of the effect 
4~ 0.5 10  was established. Unfortunately it was testing 

experiment. The matter is that the spin of the intermediate state of 
6
Li is 1/2 therefore in 

consequence of the selection rules 1j   and thus not only the TRI- but also the ROT-effect is 

precisely zero in this case. Experiments with other isotopes are significantly harder because 

the heavier the target nucleus the lower the contribution of the ( , )n  -channel. So the 

problem of more or less suitable target isotope turns out to be a basic one. Continuous 

searching for an optimal reaction allowed us to extract two promising examples.  

Among the stable targets the reaction on Zn seems to be the best. The characteristics of the 

reaction under study are the following: 
 

67 64 5
0 2Zn(n, ) Ni (E 1340 keV); ; 3 ; 2 ; 0 ; , ' 1,3I I J F L L  

        
 

The compound state spin 3I   is chosen because the alpha-decay of 2I   resonances is 

not observed in 
68

Zn. The abundance of the 
67

Zn isotope is 4.1 %, the thermal neutron cross 

section – σtherm=6.9 b. Unfortunately even in this case the flux of the gamma-quanta produced 

by (n,γ)-reaction on 
67

Zn  and the admixtures of all other Zn isotopes is about 10
5
 times more 

intensive (σγ=1.1 b for the natural Zn) than the gamma-flux of the reaction under study 

(σαγ=160 μb [9]). Thus a very fast gamma-detector such as BaF2 is required for such 

measurements. The enriched target makes the situation slightly better. 

An interesting example is the reaction on the radioactive target 
41

Ca (
5

1/ 2 1.03 10t   y, γ-

rays are not observed):  
 

41 38 7
0 2Ca(n, ) Ar (E 2167 keV); ; ; 2 ; 0 ; , ' 3,5I I J F L L  

        

 

A number of the resonances are known in the 
42

Ca compound nucleus. Unfortunately the 

values of spins I are not determined for them. For the first glance the example looks more 

promising because the ratio of the cross sections σαγ=140 mb  (σγ=4 b) is large enough, thus 

the use of this target is free of the disadvantage mentioned above. However such an 

experiment requires: extremely powerful reactor-producer to create a sample of satisfactory 

mass, isotope separation to obtain a significant resulting percentage of the isotope and to get 

rig of the radioactive 
45

Ca admixture, a high-flux beam of polarized neutrons to achieve a 

satisfactory value of the counting rate on the small sample, and a well-developed technology 

of the experimental work with the targets which are soft radioactive sources of high intensity. 

At last the value (min) 3L   prevents the use of the presented above method of 

measurement of the minor alpha-width.  

What about the resonance neutron investigations the low-laying 3
 resonance in 

150
Sm 

compound nucleus may be considered as a candidate to perform such experiments because the 

alpha-decay to the first excited level of the
 146

Nd nucleus is well displayed and there is very 

close resonance 4
 in 

150
Sm spectrum. However the problem of the extremely intensive 

background of gamma-quanta produced by the (n, γ)-reaction looks drastic.  Perhaps it is 

reasonable to begin the study of the discussed effect with the search for convenient examples 

in lighter nuclei.  

There is a broad spectrum of reactions (p,αγ) in the proton resonance area (targets with the 

masses A ~ 30  – 40) which can be analyzed for the discussed purpose (see for example 



[10]). One of the significant advantages of proton resonances is the absence in actuality the 

gamma-quanta background.  This analysis is however beyond the scope of the current paper. 

An example of the reaction (n,pγ) or (n, γα) suitable for the investigation of the ROT-effect 

is not found.  

 

CONCLUSIONS 

 

Summing up the discussions presented in the current and preceding papers it is important 

to stress the following points: 

1.  The ROT-effect is a natural property of (n,αγ), (n,pγ), (n, γα), and (p,αγ) reactions, ternary 

fission and triple events in the ordinary fission. 

2. The ROT-effect may be manifested both in sequential and simultaneous processes. The 

contribution of the latter ones differ fission from other listed reactions.  

3. If the time-reversal invariance is not violated in a sequential cascade, the interference of 

two amplitudes of the alpha or proton transfer with different multipolarities or the interference 

of the amplitudes of resonances of different spin is necessary for the existence of the ROT-

effect. 

4. The effect seems to be accessible to observation in (n,αγ)- and (p,αγ)-reaction.  

5. If the basic effect is accurately taken into account one may, in principle, search for the 

contribution of the actual time-reversal noninvariant amplitudes. 
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