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Abstract– It is shown that not all the enhancements of the fundamental symmetry–breaking 
effects allow to increase the accuracy of their measurements. The relative error of the effect  is 
suggested as criterion of its measurement accuracy rather than the effect’s magnitude. It is shown 
that the kinematical or structural enhancements practically do not affect the magnitude of this 
error and thus do not increase the accuracy of the effect’s measurements. Examples of some 
artificial normalizations are given which cause the non-physical enhancements of the effects. 
 
1. ENHANCEMENT OF THE PARITY NON-CONSERVATION EFFECTS IN 

THE RADIATION TRANSITIONS BETWEEN THE BOUND STATES OF THE 
NUCLEI. 

Consider the simplest case of the parity non-conservation in the radiation transitions 
between the nuclear excited states. The source of these effects is the weak interaction leading 
to the fact that the wave function 
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iψ  of this state contains, besides the wave function of a definite 
parity 1ψ , the small admixture 2ψ of the opposite parity state: 

                                                        1i c 2ψ ψ ψ= +                                                        (1) 
The admixture coefficient in the first-order perturbation theory is: 
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Here  is the matrix element of the weak interaction which causes P-non-conservation, while D 
is the energy difference between the two mixing nuclear levels of the opposite parity. 
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The earliest systematic studies of the possible enhancements of parity non-conservation 
in radiation transitions between the compound states of the excited nuclei were carried in the 
review paper of I.S.Shapiro [1]. It was pointed that these effects are defined by the relation: 
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Here aM  and fM are the amplitudes of the parity-allowed and parity-forbidden transitions 

respectively. The amplitude fM contains the admixture coefficient (2) . | | | |f aM M� since the 

ratio of the weak to strong interaction  constants is 710F −≈ , and therefore: 
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The factor α is defined by the structure of the states connected by the radiation transition and 
may contain the enhancement factors. The review [1] indicates 3 types of enhancement:  
1) kinematical enhancement, 2) strutural enhancement and 3) dynamical enhancement. The 
kinematical enhancement appears when the allowed transition is the magnetic one with 
multipolarity : L (a )M M ML= , while the forbidden one is the electric transition of the same 

 



multipolarity: (f )M F M EL= ⋅ .  Since in otherwise equal conditions  the magnetic transition 

amplitude is suppressed with respect to the electric one by the factor  (v is the nucleon 
velocity in the nucleus and c  is the light velocity), the enhancement factor in this case would be 

/v c
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The structural enhancement appears when the allowed transition amplitude comes to be 
unusually small due to some suppression caused by the structure of the initial and final states. 

One should point that both the kinematical and structural enhancements arise because of 
the decrease of the denominator in Eq. (4). Only the dynamical enhancement  is caused by the 
increase of the numerator in (4). This enhancement appears for the transitions between the 
nuclear compound states since the admixture amplitude (2) of the opposite parity states caused 
by the weak interaction is inversely proportional to the energy distance D between the levels of 
the opposite parity. It is well known (see e.g. [2]) that for the complicated wave functions 
containing N basic components the level spacing decreases by approximately N times with 
respect to the simple single-particle states. However the matrix element  of  the compound 
levels admixture due to the weak interaction also decreases (see e.g. [3,4]) by approximately the 
factor of 
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N . Therefore the total increase of the amplitude fM  in the numerator of (4) due to 

the dynamical enhancement is approximately 210 10N ≈ ÷ 3 . It is obvious that the effect (4) 
increases by the same factor.  

However from the physical point of view we should be interested  by such enhancements 
which allows to measure the symmetry breaking effects with the maximal precision, i.e. with the 
minimal relative error  /R Rσ . Indeed, of the real value are not the record-breaking magnitudes 
of the effects but rather the most precise definition of the P-violating interaction constants which 
define the magnitude of the parity-forbidden amplitude fM . It is believed usually that just the 
maximal value of the effect allows to measure these constants with the maximal precision. This 
however is easily proved to be wrong. Let us consider the magnitude (4) of the effect  as the ratio 
of the numerator n to the denominator d which are normally distributed around their average 
values n  and d with the  variances nσ  and dσ . Then the relative error in measuring the effect 
would be: 
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By neglecting the correlation factor ndρ  and assuming that the absolute errors of the numerator 
and the denominator are equal: 
                                                             n dσ = σ = σ                                                                 (7) 
one can write the relative error in the form: 
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One can see from this expression that only the dynamical enhancement  increasing the  value of  
the numerator in  (4) causes the decrease of  the relative error in measuring the effect, that is the 
increase of the measurement precision. The kinematical and the structural enhancements do 
decrease the d  value, but do not cause the decrease of the error in measuring the effect. Ex. (8) 
shows that these enhancements might lead only to the increase of this error, i.e. to the decreasing 
precision of the effect measurement. Since in the majority of cases d � n  even in the presence 
of the enhancements, the relative error (8) practically does not change in the cases of the  

 



kinematical and the structural enhancements of the effect. Since however the magnitude R of the 
effect increases, the magnitude of the its absolute error Rσ  also increases to the same extend, so 
the precision of the effect measurement decreases. 
 

2. THE ENHANCEMENT OF THE P-VIOLATION EFFECTS IN NEUTRON 
TRANSMISSION THROUGH THE UNROLARIZED TARGET 

Thus if we chose among the various possibilities of the P-violation effects measurements 
in the radiation transitions those which allow us to measure the effect with maximal precision, 
one should compare not the magnitudes of the effects measured but rather the relative errors in 
heir measurements. Of course the maximal precision of the measurement would  be received in 
the case of the minimal relative error. 

The additional advantage in using the relative error criterion is the fact that it 
demonstrates the correct dependence of the measurement precision on the various experimental 
parameters (the flux intensity of the particles measured, the time interval which is  necessary for 
reaching the given accuracy, the experiment geometry etc.).  For  demonstration consider the 
measurements of the P-odd correlation  ˆ( )⋅n nkσ between the neutron polarization vector nσ  
and  momentum  in polarized neutron transmission through the unpolarized target. The 
experimentally measured effect is defined by the relation: 
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where  is the number of neutrons with helicity N± ±  which pass through the target  during the 
time of the measurement.  

Let us analyze the dependence of this effect on the target thickness x . The magnitudes   
 of the numbers of neutrons with given helicity, which pass through the target with thickness  N±

x ,  is given by the expression: 
                                                     0( ) exp( )totN x N x ±

± = − ρσ  ,                                    (10) 
where  is the number of neutrons incident on the target during all the time of the 

measurement,  is the target density (the number of nuclei per unit volume), while 
0N

ρ tot
±σ  is the 

total cross section for the neutrons with given helicity on a given target. Let us present the total 
cross section in the form: 
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where  is the total cross section for the unpolarized neutrons and 0
totσ

                                                                                P
tot tot tot

+ −Δ = σ − σ                                        (12)  
is the total cross section difference for the neutrons of different helicities, which is proportional 
to the imaginary part of the neutron scattering amplitude caused by the weak interaction (see e.g. 
[5–7]). The effect magnitude (9) as a function of the target thickness would be: 
                                                                                                      (13)  exp ( ) tanh( / 2)P

totP x x= ρΔ
 Thus we see that the effect magnitude increases monotonically with the increasing target 
thickness and tends to unity for the infinite thickness. Because of the P-odd amplitude smallness 
of the neutron–nucleus interaction one can assume that for the reasonable target thickness 

. In this case: / 2 1Δ �P
totxρ

                                                                                                               (14) exp ( ) / 2P
totP x x≈ ρΔ

We see that in this approximation the effect is also proportional to the target thickness.  But this 
does not mean that the maximal precision in measurement of  the effect  (and, therefore, of the P-

 



odd amplitude) would be reached for the target with the maximal thickness. Indeed, let us 
estimate the relative error of the effect measurement,  taking into account that the relative error 
in measuring the number of neutrons transmitted through the target is defined by the expression:: 
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It follows from this expression that the relative error of measured value (9) is: 
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The minimal  magnitude of this error is reached for  
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Inserting this value into (14) we obtain for the effect magnitude 
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Just this value is measured in the experiment by choosing the target thickness of the order of the 
neutron mean free path in it. The effect’s relative error for this choice of the target thickness is; 
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This formula also allows to estimate the exposition time necessary to measure the value ΔP
tot  

with the desired accuracy for the given neutron flux of the experimental source.  
The problems of enhancement of the symmetry–breaking effects for the transmission 

experiments (as well as for all experiments with polarized neutrons) are complicated by the fact 
that both the numerator and the denominator of the expression (18) depend on the incident 
neutron energy. Of major interest is the energy in the vicinity of the p-wave resonance. In this 
region (see [3,4]): 
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Here  is the matrix element of the compound nucleus s– and p–resonance mixing due to the 

weak interaction, D is the energy spacing of the two mixing resonances,  
pv

,Γn
s p  are the partial 

neutron widths of these resonances,  pE  and Γ p  are the p–resonance energy and total width. 

Expression (18) contains all the enhancement factors of the observed effect  which lead 

to the decrease of  its relative error (19). Firstly, the ratio  contains the dynamical 

enhancement factor 

exp ( )P E
/pv D

310≈N likewise in the case of  bound states. Secondly, in transition from 
the non–resonance energies | | | | / 2− ≈ − ≈p sE E E E D  to the p-resonance energy the 

resonance enhancement  of expression (20) takes place by a factor of  approximately 2( / )pD Γ . 
The physical origin of this enhancement comes from the fact that for resonance energy the 
neutron spends inside the weak interaction field of the nucleus much more time , 
than for the non–resonance energies when the neutron flies through the nucleus without  the 
resonance delay.  The first mentioning of the resonance enhancement was in reference [8] 
devoted to the possible effect of the T–invariance violation. However the authors of [8] were 

( /res pτ ≈ Γ= )

 



considering the energy region of overlapping resonances ≤ ΓD , where this enhancement   is 
practically senseless. Th notion of the resonance enhancement was introduced independently for 
the case of the isolated resonances  Γ�D  in refs. [3,9].  

The total cross section  is a sum of contributions from s– and p–resonances as well as 
from the potential scattering and is (neglecting the interference terms): 
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Even in the vicinity of p–resonance the main contribution to (21) comes from potential scattering 
and the ‘wings’ of the s-resonance with smooth energy dependence. In the most well known case 
of 139 La  target the p–resonance contribution to the cross section at eV is about 
20%. Just because of this the effect (18) demonstrates sharp resonance behavior in the vicinity of 
this energy (see e.g. Fig.4 of the review paper [4]).  Using this fact the experimentalists  prefer to 
present instead of the observed resonance curve  the auxiliary constant quantity , 

which is obtained by normalizing the quantity (20) to the p–resonance contribution  

0.75= =pE E

exp ( )P E �P
( )p Eσ  into 

the cross section (i.e. to the last term in the sum of (21)): 
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This auxiliary quantity is related to  by the expression: exp ( )P E
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Of course, there is no objection to the introduction of this quantity. However it is often confused 
with the observed , while the relation (23) is forgotten. In doing this they speak instead 
of the resonance enhancement about the kinematical enhancement , i.e. about the factor 

exp ( )P E

/ 1/Γ Γ ≈n n
s p kR , which appear in ex. (22) (here R is the nuclear radius and 310kR −∼ ). The 

initial statements about the kinematical enhancement of the P–violating effects in neutron 
transmission were  done in refs. [10, 11]. Unfortunately, the substitution of the observed quantity 

 by the auxiliary constant  (22) and the conviction that the extremely large P–violating 
effects in neutron transmission  are caused by the kinematical enhancement  are widely spread up 
to now, while the auxiliary quantities   are always presented in literature as the observed effect 
values. Ex. (23) shows that  quantities  exceed the maximal observed effect values by a factor 
of 3–5  because even at the  p–resonance energy 

exp ( )P E

�P
�P

pσ  is much smaller than 0
totσ , which 

practically does not vary in the vicinity of the p–resonance. The same reasoning allows to put 
(23) into the approximate form: 
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assuming that within a good approximation 0
totσ  in the vicinity of  p–resonance is a constant 

which does not depend on energy.  We see that the kinematical enhancement of the auxiliary 
quantity  (22) completely disappears in the really observed  quantity (24) and is substituted by 

the hindrance factor of about 3( ) 10kR −∼ , coming from the appearance of the factor n n
s pΓ Γ  in 

 



the numerator instead of the s–resonance partial neutron width n
sΓ , which gives the main 

contribution to the total cross section (21) caused by the parity conserving strong interaction.  
One should point that this hindrance factor appears in all the experiments measuring P–violating 
effects in neutron transmission since P–violation leads to the fact that  the neutron captured into 
the s–resonance would be emitted by the p–resonance and vice versa (see the diagrams of  the 
review papers [9,4]). In observations of the P–odd correlations in the inelastic channels - for 
instance, in ( ,  reaction - this hindrance factor disappears since the partial gamma widths of 
the s– and p–resonances do not differ  practically.  Moreover,  even the structural enhancement 

effects 

)n γ

/p s
γ γΓ Γ  might appear in this correlations if  p s

γ γΓ > Γ  (see [3, 4, 9]). This is just why 

the P–odd effects for the non-resonant  polarized neutrons  in the inelastic channels 
and  exhibited quite noticeable values of and were measured [12-14] 

earlier than the effects in transmission [15]. 
( , )n γ ( , )n fis 4( 10 )−∼

The substitution of the observed  by the auxiliary quantity  and the conviction 
that  the large enhancement of the observed effects is caused by the kinematical factor leads to a 
lot of absurdities. While the observed quantity  (18)  is always smaller than unity and might be a 
measure of the weak interaction contribution into the nuclear processes, the normalization of the 
auxiliary  quantity  to the small part of the total cross section in principle allows to obtain the 
values  exceeding unity to whatever factor one likes. As seen from  (22), the “kinematical 
enhancement” causes the  quantity tend to infinity for very small values of the  p–resonance 
partial neutron widths 

exp ( )P E �P

�P

�P
n
pΓ . Owning to this fact the author had to persuade the American 

experimentalists, who believed in this enhancement existence, to remove the  suggestion to chose 
for the experiments the  p–resonances with the minimal n

pΓ  values from their proposal  of 

experiments in Los-Alamos. Since all the energy dependence of the quantity  is contained in 
the kinematical enhancement factor and is proportional to 1/ , it was necessary to explain to 
our experiments as well that measuring the effect near the thermal point energy (for ) 
would by no means increase its value. Of course for 

�P
k

0k →
n
pΓ  tending to zero the observed effect 

value  would also tend to zero. In this case the contribution exp ( )P E ( )p Eσ of the p–wave 
resonance  into  the total cross section tends to zero, while the relative error (19) would increases 
to infinity. 

 
3. T-NONINVARIANCE EFFECTS IN POLARIZED NEUTRONS TRANSITION 

THROUGH THE POLARIZED TARGET 
The above mentioned erroneous tendency to increase the P-odd effects by normalizing 

them to the small quantities was continued also in considering the P-violating T-noninvariance 
effects in the transmission of the polarized neutrons through the polarized target. The most 
odious example was presented in ref. [16]. It was suggested in this paper to measure the P- and 
T- violating quantity 
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Here  and  are the numbers of neutrons transferred through the target, while the 
lower indices mean the neutron helicities before and after the transfer through the target. The 
normalizing quantity in the denominator of  (25) depends on the angle  between the target 
polarization vector and the neutron momentum and turns to be zero near the point 

N+− N−+

θ
/ 2θ = π . It 

was suggested in [16] to carry measurements in the vicinity of this angle  because of the effect 

 



enhancement tending to infinity. Of course the relative error of the denominator in (25), as well 
as  the relative error of whole quantity (25) would  tend to infinity near this angle. This is the 
striking example of the false effect enhancement caused by the choice of the improper 
normalization. Of course the measurement precision of the T - noninvariant difference 

 would not change if we divide it by zero.  (N N+− −+− )
The real enhancements of this effect and the proper experimental parameters were 

considered in refs. [5 - 7]. It was suggested to choose the effect normalization as: 
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The relative error analysis of this quantity has shown that it oscillates as a function of the target 
thickness and changes by several orders of magnitude on the interval of a few mm. This 
oscillation is connected with the pseudo-magnetic  precession of the neutron spin [17] around the 
direction of the target polarization. In order to compensate this precession it was suggested to 
place the target into the  static magnetic field, whose magnitude is chosen in such a way that 
Larmour precession in this field completely compensates the pseudo-magnetic one. In the 
presence of this compensation the relative error in measuring the quantity T has a minimum at 

mean free path lengths with the energy dependence in the vicinity of the p–resonance: 2 2.5÷
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One can see that the effect changes sign at the point of the resonance pE E=  and  reaches the 

maximal absolute value at : / 2p pE E= ± Γ

                                               

2

( / 2)
n
p TP

p p n
s p

V DT E E
D

⎛ ⎞Γ
= + Γ ≈ ⎜ ⎟⎜ ⎟Γ Γ⎝ ⎠

                                (28) 

Similar to the effect (24), the quantity T experiences the dynamical enhancement  and the 

resonance enhancement , which is partially compensated by the hindrance factor 

/TPV D
2( / )D Γ

/ (n n
p s kRΓ Γ ≈ )  typical, as pointed earlier, for the neutron transmission experiments with P-

violation.  
It was shown in [5-7] that the minimal relative error of the quantity  in the above 

energy points (in the case of complete compensation of the pseudo-magnetic precession) is 
inversely proportional to the quantity (27).  This means that the enhancement of the Т(Е)  effect  
indeed allows to measure it with maximal precision.  

( )T E

 
4. SUMMARY 

If one wants to find the optimal conditions for measuring the effects of fundamental 
symmetry breaking with maximal precision, one needs to compare the effect’s relative errors 
rather than its magnitudes. Very often it turns out that the effects maximal magnitude does not 
mean at all that the error in its measuring would be minimal. This usually happens when the 
quantities, which normalize the effect, become smaller. The examples are given by the 
kinematical and the structural enhancement of the P-odd effects in radiation transitions. These 
enhancements increase the effect indeed but practically do not change its relative error. The more 
illustrative example is the “kinematical enhancement” of the P-odd effects in neutron transition, 
appearing when the “natural” normalization  quantity of the total cross section is artificially 
substituted  by the certainly smaller contribution into this cross section from the p-resonance. 
This substitution not only leaves the effects relative error unaltered, but also distorts the physical 
picture of the experimentally observed enhancement. Even more vivid example of the artificial 

 



effect enhancement is the choice of the normalizing quantity which vanishes and the suggestions 
to measure in the vicinity of this vanishing point.   In this case the effect tends to infinity but  so 
does also its relative error.  
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