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  Abstract 

The Goos-Hänchen effect, a longitudinal shift of a wave beam at total inner 

reflection, is a well-known optical phenomenon. It was discovered in 1947 and have 

been observed many times at reflection of micro- and ultrasonic waves since then.  

Here we present an elementary theory of the GH effect to describe reflection of a 

massive particle and demonstrate how the shift is related to delay time at reflection. It 

is shown that giant positive or negative longitudinal shifts of the neutron beam may 

occur at neutron reflection from some specially manufactured planar system. The 

possibility of delay time measurement at neutron reflection and direct experimental 

observation of the GH shift are also discussed. 

 

1. Introduction 

The discovery by Goos and Hänchen [1,2] of the wave beam longitudinal shift at total 

inner reflection of light called the Goos - Hänchen  effect has had remarkable influence on the 

progress in understanding of reflection. It is recognized that the phenomenon is a very general 

one and its investigation goes beyond the scope of conventional light optics. The GH shift was 

observed for ultrasonic waves [3-5] and later, for microwaves [6,7] and X-rays [8]. Obviously 

it was quite natural to suppose that massive particles must also demonstrate the GH shift at 

their reflection from the region of the potential. 

As far as we know the 

corresponding quantum problem was 

first analyzed by Hora [9]. Later such 

approach has become quite common 

[10,11] especially since the connection 

of the GH effect with the quantum 

problem of reflection time was realized.  

Till recently the problem of GH shift 

at reflection of a massive particle 

remained purely theoretical in spite of its 

more than half-century history. Best 

conditions for detection of the 

phenomenon seem to exist in neutron optics. To our knowledge, A.A. Seregin was first to 

raise the question of the GH effect at neutron reflection [13]. Later the theory of the effect and 

possibilities of its observation in neutron experiments were discussed in [14, 15]. The recent 

work [16] reported that the GH effect was observed for neutrons for the first time. This gave 

rise to discussion and made the problem even more actual. 

 

2. The Goos-Hänchen shift and neutron reflection time from matter 

Below our attention is focused on reflection of neutron waves. The peculiarity of neutron 

optics is that in most cases interaction of neutrons with matter may be described by 

introducing the effective potential  

      Fig.1. The Goos-Chänchen effect.  
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where ρ is the volume density of atoms and b is the volume average of the coherent scattering 

length. To illustrate how the longitudinal shift of the wave beam occurs at reflection of 

neutron waves from the border of matter we address here to theoretical approach of Artmann 

[18]. Artmann’s method is widely known and with some modification it was multiply used in 

a number of subsequent papers (see, for example [4, 19, 20, 14]). 

Let a medium with the effective potential U be bordered by the plane y = 0. Considering 

the reflection of the wave beam from the border and following [21] we accept for simplicity 

that the beam is formed by just two waves whose wave vectors slightly differ in their 

direction. For each of the waves the condition of total reflection nE U holds. Here  
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and ky is the component of the wave vector normal to the surface.  

On the surface of matter x-components of incoming waves are xexp( ik x )  and 

 x xexp i k k x   . The corresponding reflected waves differ from the incoming ones by 

phase and their x-components on the surface are xexp( ik x )  and 

   x xexp i k k x       , respectively. The phase shift Δφ may be determined in a 

conventional way from continuity conditions at the border. Such waves interfere and for the x-

component of the superposition of the reflected waves we have   

                           x x xexp(ik x ) 1 exp i k x        .                                            (3) 

The condition of maximum intensity or of constructive interference is 

                                                xk x 2    ,                                                                (4) 

where the integer number  is the order of interference. 

In the absence of total reflection, in particular for neutrons with the energy above the 

barrier nE U  the phase shift is absent and both  and  are zero. In this case the condition 

of maximum intensity is x 0k x 2  . Consequently, the phase shift associated with total 

reflection leads to the beam shift at  0 xx x k      . In the limit of Δkx going to zero 

we come to famous Artmann’s formula for the longitudinal Goos-Hänchen shift. 
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Above it was believed that the wave number xk varies only due to variation of the angle of 

incidence. Taking into account that the total k-number 2 2 2

0 x zk k k   is constant we write the 

displacement ζ in equation (5) in terms of the phase derivative with respect to En 
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Finding the relation for the phase shift of the reflected wave and substituting it into (6) we 

obtain  
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in full agreement with the results [11]. Here bk 2mU  is the border wave number. 

Note the following remarkable feature of equation (6). The value  
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which enters in this equation is the well-known group delay time (GDT) introduced by 

Eisenbud, Bohm and Wigner [22-24] as a measure of interaction time in quantum mechanics. 

Consequently, equation (6) can be written in the form 

                                                                   xv    .                                                                 (9) 

With some reservations the GDT may be interpreted as neutron reflection time. The 

relation between the reflection time and the longitudinal G.-H shift was first noted by Agudin 

[12]. Note that in the case under consideration reflection from the potential barrier GDT is 
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Alternative approach to the theory of GH effect based on the fluxes balance in condition of 

total reflection was developed by Renard [10]. We present here only some based principle of 

this theory limiting our self only by the case of the total reflection of neutron by matter. 

Since at the condition of total reflection a wave penetrates into the region of matter, 

attenuating there exponentially, a finite particle density and correspondent flux directed 

parallel to the surface are in this classical forbidden region. This extra flux Jt caused by the 

partial penetrating of neutrons through interface must be compensated by decreasing of the 

flux in the region correspondent to the geometrical reflection of the initial beam. Simple 

calculations lead to the result  
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from which it is easy to define the transversal displacement d of the reflected beam and 

correspondent longitudinal shift ζ along the interface 
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This result differs from the formula (7) and consequently contradicts to the hypothesis of 

relation between GH shift ant GDT (9). Nevertheless, the equation (12) was used as a basis for 

calculation of the results proposed [14] and realized [16] in neutron optical experiments.  

For the long time the origin of the discrepancy between the results which follow from 

these two physically approaches was not properly understood. The paradox was resolved by 

Yasimoto, Oishi and Fedoseev [25, 26].  The point is that in Renard’s approach it was not 

taken into account that phase difference between incoming and reflected waves leads to 

distortion of the flux in the region of crossing of two beams. Whereas we could see from 

Artmann’s approach just this phase shift at total reflection is the origin of the GH effect. 

Consequently, an extra flux that rises at total reflection is the sum of the flux of evanescent 

waves (11) inside matter and the additional flux Jir arising due to interference of incoming and 

outgoing beams (see figure 2). The calculation that takes into account the above circumstance 

leads to equation (7). Thus, both approaches, namely, the method of Artmann and the one 



based on flux balance are 

equivalent. This means that the 

longitudinal shift ζ of the beam 

may be represented as a product 

of longitudinal velocity and 

GDT. 

Taking into account the fact 

that the effective potential U is 

typically of the order of 10
-7

 eV 

and that the condition of total 

reflection is nE U , from 

equation (10) we obtain that with 

the exception of two narrow 

regions, i.e., that close to zero 

energy and the one close to the 

barrier, the group delay time is r 

≈ 46 ns. 

 

3. Giant and negative longitudinal displacements of reflected neutron beam 

Direct observation of neutron beam shift at total reflection is quite a difficult task. 

Smallness of the effect is not the only problem. In the pioneering works [1,2] the position of 

the totally reflected wave beam is compared with that of the beam reflected from a metal film 

because that is very small [27]. In the neutron experiment no reference position which the 

shift could be counted from was found. In fact, in [13,14] it is suggested that the position of 

the reflected beam should be compared with the results of calculation.  

In addition, [14] suggests measuring the phase of the reflected wave using an 

interferometer. However, though phase shift at reflection and longitudinal shift of the reflected 

wave are closely related phenomena, they are different from the physics viewpoint. Therefore, 

it is not quite correct to interpret rather impressive manifestation of the phase shift effects 

detected in [16] as direct observation of the GH shift (see discussion in [17]). 

The solution to the problem of observation of the GH effect in a neutron experiment will 

probably be found if one turns to the idea of resonant amplification of the beam shift which 

may occur at reflection from multilayer structures as proposed by Tamir and Bertony [28]. 

Later the problem was theoretically investigated [29,30] and a giant shift at light reflection 

from the waveguide structure was observed [31]. With respect to neutrons a similar 

assumption was discussed from a slightly different standpoint in [15].    

The conditions for the waveguide-type propagation of the neutron flux along the surface 

of matter may be satisfied for quite various types of planar structures. The simplest one is a 

homogeneous film with the effective potential U1 on the substrate with the potential U2 > U1. 

It is obvious that neutrons with 2nE U  will be totally reflected from such a structure. In the 

case of normal incidence the general expression for the amplitude of the reflected wave is 
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where  is the film thickness, k0 is the wave number of the initial wave and 
2

1 0 14k k b  , 

and 
2

2 0 24k k b  are the wave numbers in the matter of the film and of the substrate, 

       Fig.2. Illustration of the idea of flux balance. The sum  

       of   the  fluxes Jt and Jir  must be  compared  with  the    

       disappearing flux in the region d [25]. 



respectively. In the considered case of total reflection from nonabsorbing matter r exp( i ) , 

k2 is imaginary and k1 may be either real or imaginary depending on neutron energy.  

Having obtained from eq. (13) the phase of the reflected wave  0( k ) arctg Im( r ) Re( r )   

it is easy to find the derivative 2

0d d( k )  and GDT (8) which is directly related to the 

longitudinal shift (9). In figure 3 the result of such calculation for the film with the thickness 

90nm and the effective potential U1 = 91neV on the substrate with U2 = 245 neV is shown. 

As is clearly seen in the figure 

directly in the resonance the GDT 

is as large as 260 ns. Note that in 

accordance with (10) in the case of 

neutron reflection from a pure 

substrate the GDT is only 5.4 ns. 

As it follows from equation (9), the 

longitudinal shift of the reflected 

beam experiences resonant 

amplification equal to that of the 

delay time. 

At neutron reflection from 

multilayers another remarkable 

phenomenon may also arise. Under 

some conditions the group time 

and the longitudinal shift of the 

reflected beam may be negative. 

The possibility of a negative GH 

shift was first pointed to in paper 

[28] cited above. Later, the problem of negative beam shift and negative GDT was the subject 

of many theoretical [32-35] and experimental [36-39] investigations. There exist a large 

number of various objects and media reflection from which is accompanied by negative beam 

shift. It is beyond the scope of the given work to present any detailed review of related papers. 

We will only dwell on the noted above case of neutron reflection from a simple planar 

structure and turn back to the simplest one, namely, to a homogeneous film on a substrate. 

Differently from the case considered above the film potential, U1, is now larger than that 

of the substrate, U2.The effective potential of such a structure looks like an asymmetric 

potential barrier.  The reflection coefficient of the barrier is then  
2

0 0R k r( k and it can be 

easily found from equation (13). Above the barrier the coefficient R oscillates and decreases 

rather rapidly with increasing k0. The GDT from that asymmetric potential barrier was found 

in [41] where it is also shown that in the minima of the reflection curve the GDT is negative.  

In accordance with (9) the reflected beam has to undergo negative shift in such conditions.  

  On the left figure 4 shows the result of calculation of the GDT and the neutron reflection 

coefficient from a nickel film 70nm thick deposited on a quartz substrate. It is seen that in the 

minima of the reflection curve the GDT reaches rather large negative values. In spite of that 

the reflection coefficient is relatively small in this case one may hope that the negative GDT 

and the negative longitudinal shift will be measurable. The variety of multilayers 

characterized by negative GDT is though quite wide. This permits choosing an optimal 

relation between an absolute GDT value and the reflected beam intensity. 
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Fig.3. The group delay time at neutron reflection from 

a thin film on a substrate. In the insert there is shown 

the potential structure of such a combination. See the 

text for details. 



 

As an example the results of calculation for a three-layer structure are given. Its effective 

potential is two barriers not equal in width separated by a well. The data used in the 

calculation correspond to Ni-Ti-Ni films with the thickness 23, 13, 33 nm, respectively. In this 

case the reflection coefficient is about 0.4 in the resonance and the negative GDT has a twice 

smaller absolute value than in the previous case. 
 

4. Possibilities of experimental observation 

4.1 Measurement of the group delay time. The possibility of direct measurement of the 

GDT at neutron reflection was experimentally demonstrated many years ago. The 

measurement is based on the so-called Larmor clock. The idea is to use the Larmor frequency 

of neutron spin precession in the magnetic field as a standard of frequency.  Baz’ [41] was the 

first to propose using such a clock as an original theoretical method to calculate the time of 

interaction of a particle with a three dimensional potential. Then Rybachenko [42] used the 

concept to calculate the particle tunneling time through a potential barrier. The Larmor time 

appears in many theoretical works dedicated to the problem of interaction time (see, for 

example [43,44] ). It is closely related with the group delay time of Bohm-Wigner. Indeed, the 

additional angle of Larmor precession arising due to interaction with any object may be 

identified with the phase difference Δφ between two spin components of the resulting wave 

function whose wave numbers are different.   
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where k0 is the neutron wave number in the absence of the magnetic field, μ is the neutron 

magnetic moment and  B is the magnetic induction. Defining after Baz’ the time delay due to 

interaction as                                                       
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Fig.4. The group delay time (solid) and the reflection coefficient (dash) for two multilayers. On 

the left hand side – a film on a substrate, on the right hand side – three films. The corresponding 

potential form is shown in the upper right hand corner of each figure. See the text for details. 



where ωL is the Larmor frequency and taking into account that   2 2 22 2B m k k E      

we come to the relation  Lt E     coincident with (8) in the limit 0B . 

The Larmor clock method was successfully used in neutron experiments for measuring the 

delay time at refraction, Bragg reflection from a mutilayer mirror and also, at tunneling in the 

resonance of a quasi-bound state [45-48]. Note that the measured time error was about 0.5ns 

which is less than GDT at total reflection by an order of magnitude. 

 

 4.2. Direct measurement of the Goos – Hänchen shift. As is shown above the GDT from 

multilayer structures may reach in the resonance a positive or negative value of an order of 

100 - 200 ns. Standard practice of the GH type experiment is that instead of the longitudinal 

shift r xv  , the transverse beam shift  0yd v v   is measured which is proportional to ζ 

(see figure 2). By substituting eq. (9) and the relation for the total velocity v0  we obtain  

                                          
y x

y
2 2

y x

v v
d v

v v
   


   .                     y xv v                    (16) 

As soon as we discuss either total reflection or the case when the energy just slightly 

exceeds the barrier, the velocity component vy normal to the matter interface is on the order of 

some meters per second. Therefore, the inequality in (16) is valid for all neutrons except the 

slowest neutrons and UCNs. The transverse shift d depends on the normal velocity alone. For 

the total reflection from homogeneous matter the beam shift is y r d v 10nm    and is hardly 

measurable.  

Use of multilayer structures makes possible resonant enhancement of the GDT and of the 

longitudinal beam shift which is proportional to the former. The transverse shift is then of an 

order of a micrometer, which provides hope of performing appropriate experiments. The 

resonant behavior of the effect allows us to solve another serious problem. Because outside 

the very narrow resonance region the beam shift is small, the position of the beam beyond its 

limits may be accepted as a reference position with respect to which a relatively large resonant 

shift can be measured. 

It is natural to think that the experiment can be performed with a neutron reflectometer 

operating in the time-of-flight mode. A narrow neutron beam will then fall on the sample at a 

fixed incidence angle  and the normal to surface component of the wave vector 

y xk (t) k (t)   will depend on the time of flight. Thus reflected beam will only shift from its 

reference position over a short and well-known time interval. The experiment can be 

performed either with a position-sensitive detector or by using partial screening of the 

reflected beam with a nontransparent screen with a sharp edge. The beam shift will then result 

at variation of the count rate. 

 

5. Conclusion 

The well-known Goos – Hänchen effect was analyzed for the case of neutron reflection 

from matter. It is shown that the longitudinal shift of the reflected beam is always determined 

by the product of the longitudinal neutron velocity and the group delay time. In the case of 

total reflection of neutrons from matter the shift is very small and is unlikely to be measurable. 

However, in the case of neutron reflection from planar multilayer structures resonant 

enhancement of the effect may take place and in some conditions both the longitudinal shift 

and the group delay time may be negative. Some possibilities of experimental observation of 

the group delay time and of the Goos – Hänchen shift in a neutron experiment were discussed. 
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