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The concept of the coherence length of the neutron is explored. The generally accepted
definition of a Gaussian wave packet based on the method of the beam preparation, and
the singular de Broglie’s wave packet are considered. Possible ways of measuring the
coherence length are discussed.

Examination of wave packets is, apparently, the most important fundamental prob-
lem of physics today. It is clear that the wave function of the neutron is not a plane wave.
It should be a vector of the Hilbert space i.e. a wave packet having certain properties. It
has some size, called the coherent length, and the size can change with energy. In [1] it
was reasonably noted that unstable particle with a lifetime of τ can have the size of the

value of L =
√

h̄τ/m, which for the neutron is 0.75 cm. However, the finite lifetime can
lead also to the definition of the packet size proportional to the neutron velocity L = vτ .
So the greater the speed, the larger is the wave packet, although from a physical point
of view, it seems more reasonable to consider [2], that the faster the particle, the more
neutron should look like a point particle.

In [3] wave packet was introduced to explain the UCN anomaly (abnormally high losses
in traps). The packet size was estimated to be L ≈ 105λBe, where λBe is the minimal
wavelength of the neutron which can be stored in beryllium traps. In this case L is the
order of several millimeters, which does not contradict the assumption made in the [1].
Later [4,5] the assumption was made that the size of the wave packet depends on the speed
and is proportional to the wavelength: L ≈ 105λ/2π. Therefore, the thermal neutron wave
packet size is up to about 10 microns. Perhaps it is correct, but how experimentally to
measure the size of the wave packet — that is the question.

One way is to look for neutron transmission through films at incidence at a subcritical
glancing angle [4,6,7]. Some indication of the transmission was received, but there is still
no certainty. More precise experiments are needed.

Here another experiment is discussed. When, because of some coherent process, the
neutron wave function of a polarized neutron is split into two diverging in the space
oppositely polarized components, one can observe superposition of polarization and find
the distance, at which superposition is terminated, i.e. two components diverge and the
neutron becomes only in one of the components.

To predict theoretically transition of a coherent superposition into incoherent one, it
is necessary to accept a model. Gaussian packets are not suitable because they spread out
in the space. Gaussian packets are the result of the beam preparation. Their width ∆k in
momentum space characterizes the coherent length lc = 1/∆k in coordinate space. This
length is well observed in experiments on interference measurements of distances [8–10].
We will accept a more appropriate model of a nonspreading singular de Broglie’s wave
packet

ΨdB(r,k, t) =

√
q

2π
exp(ikr − iωt)

exp(−q|r − kt|)
|r − kt| , (1)



wherein the spatial size is l = 1/q. To get rid of various constants, the variable t in
(1) includes factor h̄/m, so that t has dimension cm−2, and the angular frequency is
Ω = (k2 − q2)/2. The packet (1) is normalized to unity by integration over the volume:∫

d3r|ψ rmdB|2 = 1, or as a full flux through any plane, integrated over time. Fourier
decomposition of this packet has the form

ΨdB(r,k, t) =

√
q

2π
exp(ikr − iωt)

4π

(2π)3

∫
d3p

exp(ip(r − kt))

p2 + q2
, (2)

and it follows that the packet satisfies the equation
(

i∂

∂t
+

∆

2

)
ΨdB(r,k, t) = −q

√
2π exp(−i(k2 + q2)t/2)δ(r − kt). (3)

In the next three sections some possible experiments with the de Broglie wave packet
are discussed. Detailed calculations are presented in the appendices.

Measuring of the de Broglie wave packet size at coherent splitting of the neutron
wave into 2 parts with equal but not collinear speeds. Consider a packet (1), which
describes a particle with a fixed speed. Imagine a neutron flying at a speed of k along
the axis x and polarized along the axis y. In some point x = 0, as shown in Fig.1, it is
split into 2 components polarized along and opposite axis z and propagating at an angle
θ to the x-axis. Spinor wave function of the neutron can be written as

Fig. 1: The neutron because of a coherent process is split into two oppositely polarized
components symmetrically propagating at a small angle θ relatively to the original direc-
tion. Superposition of split component passes through an analyzer which transmits only
neutrons polarized along the x-axis. The intensity recorded by the detector after analyzer
shifting along the x-axis, should contain an oscillating component of the type shown in
Fig.2.

|Ψ〉 =
1√
2

(ΨdB(r,k+, t)|+ z〉+ ΨdB(r,k−, t)| − z〉) , (4)

where k± = (kx, 0,±kz), kx = k cos θ, kz = k sin θ ≈ kθ. Let’s put on the way of split
neutron an analyzer transmitting only neutrons, polarized along the x-axis (it can be also
along the axis y, which is not essential). Since | ± z〉 = (|x〉 ± | − x〉)/√2, then the wave
function, transmitted by the analyzer is

ψ(r, t) = 〈x||Ψ〉 =
1

2
(ΨdB(r,k+, t) + ΨdB(r,k−, t)) . (5)



Therefore, the total flux through the plane y, z, located at the point x after the analyzer
is

I(x) =
1

4
(I+ + I− + I±), (6)

where I+,− = kx

∫
dydzdt |ΨdB(r,k±, t)|2 , (7)

I± = 2kx

∫
dydzdt cos(2kzz) |ΨdB(r,k+, t)ΨdB(r,k−, t)| . (8)

The integrals (7), as is easy to show, are equal to one because of normalization. Of interest
is the interference flux I±. Detailed calculation is presented in the Appendix A. Result is
represented by the function

f(X) = 2η
∫ 1

0
ds cos(sX)

exp
(
−X

√
1− s2 + η2

)

√
1− s2 + η2

, (9)

on two dimensionless parameters X = 2kxθ2 and η = q/kθ.
Note that the q can currently be estimated [3] by the value of 10−5k. If θ ≈ 10−5 then

η ≈ 1, and the attenuation length is approximately equal to the period of oscillation,
so the oscillations after analyzer virtually will not be observed. To observe them, it is
desirable to have θ ≈ 10−4. Then η ≈ 0.1. With this setting of η the function (9) looks
as shown in Fig. 2.

Fig. 2: The result of a numerical calculation func-
tions (9) for η = 0.1.

The variable X corresponds to
displacement in space

x = Xλ/4πθ2, (10)

where λ – neutron wavelength.
For the experiment, the displace-
ment x should be large enough.
If the parameter is X = 1 corre-
sponds to the actual displacement
of 1 cm, then the θ ≈ 10−4 neu-
tron wavelength should be λ ≈ 10
Å, which corresponds to an energy
of 1 meV. Let’s estimate how to
get splitting of θ ≈ 10−4.

Imagine transmission of a
beam through a polarized magne-
tized prism, as shown in Fig. 3.

The neutron beam polarized along the x-axis, falls from the left perpendicular to the
vertical face of the prism magnetized along the axis z. Near the exit oblique face within
the prism the wave vectors of the two components polarized along the z-axis are equal

kin,1,2 = n
√

k2 − u1,2 cos φ + t
√

k2 − u1,2 sin φ, where n and t are the unit vectors along
the normal and along generatrix of the oblique edge, respectively, and u1,2 are interaction
potentials of the two spin components with prism material and its magnetic induction.
After exiting the prism into space without magnetic field the wave vectors are kout1,2 =

n
√

(k2 − u1,2) cos2 φ + u1,2+t
√

k2 − u1,2 sin φ. The square of the difference of two vectors,



Fig. 3: Getting slightly split beam of neutrons by transmission through a magnetized
prism.

divided by the square of the sum is equal to θ2:

θ2 =

(√
k2 + u1 tg2 φ−

√
k2 + u2 tg2 φ

)2

+
(√

k2 − u1 −
√

k2 − u2

)2
tg2 φ

(√
k2 + u1 tg2 φ +

√
k2 + u2 tg2 φ

)2

+
(√

k2 − u1 +
√

k2 − u2

)2
tg2 φ

, (11)

which for small u is reduced to

θ =
∆u

4k2
tg φ, (12)

where ∆u = u1 − u2. At k2 = 1 meV the value θ = 10−4 is obtained, if ∆u = 10−7 eV,
which corresponds to magnetization 2T, and tg φ = 4, 1.e. φ ≈ 750.

Fig. 4: The result of the averaging of the function
Fig.2, in accordance with (14) for ∆ = 0.1.

The result (9) is obtained
for a fixed packet speed k =√

k2
x + k2

z ≈ kx. Let us now imag-
ine that in fact we have a Gaus-
sian distribution of speeds

w(k) =
1√
π∆

exp

(
−(k − 1)2

∆2

)
,

(13)
where all the parameters are de-
fined in terms of the average speed
k0. Integrating (9) over this dis-
tribution we get

F (X) =

∞∫

−∞

2kηdk√
π∆

exp

(
−(k − 1)2

∆2

) ∫ 1

0
ds cos (sXk)

exp
(
−Xk

√
1− s2 + η2

)

√
1− s2 + η2

. (14)

The result for the function shown in Fig.2, is presented in Fig. 4 for ∆ = 0.5.

Scheme of the packet size measurement by splitting of the neutron into 2 compo-
nents with different but parallel speeds



Suppose now that k± = (k ± δ, 0, 0), where δ/k ¿ 1. Then (8) takes the form

I± = 2k
∫

dydzdt cos(2δx− 2kδt) |Ψd(r,k+, t)Ψd(r,k−, t)| . (15)

The calculation of this integral, as detailed in Appendix B, again leads to the function
(9), in which the dimensionless parameters are X = kxζ2 η = q/kζ, where ζ = δ/k has
the same role as the parameter θ in (9).

Fig. 5: Getting a slightly longitudinally split beam of neutrons via RF spin-flipper [11].

The experimental scheme is shown in Fig. 5. If neutrons of energy 10−4 eV pass
through RF spin flipper with frequency 10 MHz, the velocities of the neutron components
polarized up and down become different by an amount δ = kh̄ω/k2 = 10−4k. The
parameter η = 0.1, and the function (9) has the same form as shown in Fig. 2. Let’s see
what will be the oscillation period. Since it is determined by the same formula as the (10)
only with the replacement of θ → ζ, and the energy of 10−4 eV corresponds to Λ ≈ 30 Å,
the parameter X = 1 will correspond to x ≈ 3 cm. Thus, the whole picture, as shown in
Fig. 2 can be seen by moving the analyzer to 60 cm.

Scheme of the experiment for measuring the packet size by splitting of the
neutron into 2 parts with different and non-parallel speeds.

Consider now the case when the neutron is split into 2 components propagating with
different velocities at an angle to each other. Such a beam, for example, can be obtained
by reflection of a neutron beam polarized along the external magnetic field from the
magnetic mirror with magnetization noncollinear to the external field. At the reflection
the reflected beam is split into 2 Components. One, reflected in the specular direction,
retains its polarization and the velocity of the incident beam and the other has the opposite
polarization and is reflected in the non-specular direction [12] under larger grazing angle.

We choose the x-axis in such a way that the components of the wave vectors have the
form k1,2 = (k ± δ, 0,±kz). Then the integral (8) becomes

I± = 2kx

∫
dydzdt cos(2kzz + 2xδ − 2kδt) |Ψd(r,k1, t)Ψd(r,k2, t)| . (16)

Obviously, the calculations result in the same function 9, but instead of the parameter θ
there will be

ξ =
√

θ2 + ζ2 =
|k+ − k−|
|k+ + k−| ≈

∆k

k0

. (17)



Let’s estimate the value of these parameters in the experiment [12]. Since the experiment
was performed with thermal neutrons, and external field varied from 33 Oe to 4000 Oe,
which corresponds to a magnetic energy from 10−10 and 10−8 eV, the parameter ξ changed
in within 10−6 ÷ 10−8, and the parameter η in (9) was much greater than unity, then (9)
can be approximated as

f(X) ≈
∫ 1

0
ds cos(sX) exp(−Xη) ≈ exp(−2qxξ) = exp

(
−2 · 10−5kxξ

)
, (18)

therefore coherence length, respectively, in this case

Lc = 105λ/4πξ, (19)

varies in the range 1÷ 100 m, i.e. in this case practically we deal with a plane wave.

Conclusion This article shows the possibility of a direct measurement of the size of
neutron wave packet, described by the singular de Broglie’s function. No fundamental
difficulties for corresponding experiments are expected.

Appendix The calculation of the integral (8).
We will show here in detail how to calculate the integral (8). We use the Fourier

representation (2), write 2 cos(2kzz) as the sum of two exponents and obtain the integral

I± =
q(4π)2

(2π)7

∫ kxd
3pd3p′dydzdt

(p2 + q2)(p′2 + q2)
exp(ip(r − k+t) + ip′(r − k−t)± 2ikzz). (20)

Integrating over the plane y, z and over time, and then over p′, gives

J =
q(4π)2

(2π)4

∫ d3p exp(−2i[pz ± kz]xkz/kx)

(p2 + q2){p2
y + (pz ± 2kz)2 + (px + 2[pz ± kz]kz/kx)2 + q2} . (21)

We make the change of variables pz ± kz → pz, and introduce θ = kz/kx ≈ kz/k then the
integral is transformed into

J =
q

π2

∫ d3p exp(−2ipzxθ)

(p2
y + (pz ∓ kz)2 + p2

x + q2){p2
y + (pz ± kz)2 + (px + 2pzθ)2 + q2} . (22)

Let us make more the change of variable px + pzθ → px. Then the integral is transformed
into

∫ (q/π2)d3p exp(−2ipzxθ)

(p2
y + (pz ∓ kz)2 + (px − pzθ)2 + q2){p2

y + (pz ± kz)2 + (px + pzθ)2 + q2} . (23)

We use the transformation

1

AB
=

∫ 1

0

dα

(αA + (1− α)B)2
. (24)

Then the integral is transformed into

1∫

0

dα
∫ (q/π2)d3p exp(−2ipzxθ)

(p2
y + p2

z(1 + θ2) + p2
x + 2(pxpzθ ± pzkz)(1− 2α) + k2

z + q2)2
. (25)



We make the change of variables s = 2α − 1 px − spzθ → px. Then (25) is transformed
into

J =

1∫

−1

ds
∫ (q/2π2)d3p exp(−2ipzxθ)

(p2
y + p2

x + p2
z(1 + (1− s2)θ2)∓ 2pzkzs + k2

z + q2)2
. (26)

Integrating over dpx, dpy gives

J =

1∫

−1

ds
∫ (q/2π)dpz exp(−2ipzxθ)

p2
z(1 + (1− s2)θ2)∓ 2pzkzs + k2

z + q2
. (27)

For small θ integral can be simplified

J ≈
1∫

−1

ds
∫ (q/2π)dpz exp(−2ipzxθ)

p2
z ∓ 2pzkzs + k2

z + q2
. (28)

We make the change of variables pz ∓ skz → pz, then we get

J =

1∫

−1

ds
∫ (q/2π)dpz exp(∓2iskzxθ) exp(−2ipzxθ)

(p2
z + (1− s2)k2

z + q2)
. (29)

You can now integrate over pz. The result is

I± = 2q

1∫

0

ds cos(2skxθ2)
exp

(
−2xθ

√
q2 + k2

z(1− s2)
)

√
q2 + k2

z(1− s2)
. (30)

Take out kz outside square root. As a result, we obtain the function (8).

The calculation of the integral (15) Write 2 cos(ϑ) as a sum of two exponents, then
we get the integral

J =
q(4π)2

(2π)7

∫ kd3pd3p′dydzdt

(p2 + q2)(p′2 + q2)
eip(r−k+t)+ip′(r−k−t)±2iδx∓2ikδt. (31)

Integration over time and coordinates and leads to three δ-functions which make it easy
to integrate over d3p′, resulting in the expression

J ≈ q

π2

∫ d3p exp(∓2ixδ2/k) exp(−2ixδpx/k)

(p2 + q2)(p2
y + p2

z + [px ± 2δ]2 + q2)
. (32)

Change of variables px ± δ → px leads to

J ≈ q

π2

∫ d3p exp(−2ixδpx/k)

(p2
y + p2

z + [px ∓ δ]2 + q2)(p2
y + p2

z + [px ± δ]2 + q2)
. (33)

We make transformation (24) and change of variables 2α− 1 = s. As a result we obtain

J =

1∫

−1

dsq

2π2

∫ d3p exp(−2ixδpx/k)

(p2
y + p2

z + p2
x + q2 + δ2 ∓ 2spxδ)2

. (34)



Change of variable px ∓ sδ → px and integration over dpydpz gives

J =

1∫

−1

dsq

2π

∫ dpx exp(±2isxδ2/k) exp(−2ixδpx/k)

p2
x + q2 + δ2(1− s2)

. (35)

After integration over dpx we finally obtain the function (9), in which η = q/kζ, ζ = δ/k
and X = 2xkζ2.
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