STUDY OF PROMPT NEUTRON EMISSION IN 235U(n,f) AT THE GELINA FACILITY

Alf Göök, Franz-Josef Hambsch, and Stephan Oberstedt

European Commission - Joint Research Centre
Directorate G - Unit G.2
Retieseweg 111
B-2440 Geel, Belgium

Abstract: Experimental activities at JRC-Geel on prompt fission neutron (PFN) emission in response to OECD/NEA nuclear data requests are presented in this contribution. Specifically, on-going investigations of PFN emission from the reaction 235U(n,f) in the region of the resolved resonances, taking place at the GELINA facility, are presented. The focus of this contribution lies on studies of PFN correlations with fission fragment properties. The experiment employs a scintillation detector array for neutron detection, while fission fragment properties are determined via the double kinetic energy technique using a position sensitive twin ionization chamber. This setup allows us to study several correlations between properties of neutrons and fission fragments simultaneously.

I. INTRODUCTION

Improved knowledge on the properties of the prompt fission neutrons (PFN), their multiplicities, as well as their energy and angular distributions can shed light on the fission process near the scission point. These properties are related to the deformation of fission fragments at scission, the sharing of excitation energy between the fragments and the time scale of the process itself. Experimental investigations of prompt fission neutrons and fission fragment properties in resonance neutron induced fission on 235U are taking place at the GELINA facility of the JRC-Geel. In recent years large efforts have been put into the modelling of PFN emission in fission, see for example Ref. [1] and references therein. The efforts are quite successful in both consistency between the different approaches and in reproducing available experimental data. However, in the case of 235U(n,f) difficulties have been encountered, especially regarding the dependency of ν on the total kinetic energy (TKE) of the fission fragments, see for example Ref [2]. Focusing on the high TKE range Kornilov, et al. has suggested that the experimental observation of ν substantially larger than zero at the maximum available energy is a signature of scission-neutron emission [3]. It was argued that, because evaporation neutrons from the fragments are energetically not allowed at such high TKE the observed neutrons would have to originate from another source. The difference between experimental data and calculation of ν(TKE) based on neutrons evaporated from fragments was used to estimate the scission-neutron yield. Possible deficiencies in the experimental data were also pointed out [3]. In order to address these issues it is of interest to revisit PFN and fragment correlations in 235U(n,f) experimentally. All results on correlations between fission fragment properties and PFN properties presented here are from the selected incident neutron energy range [0.3 eV, 45 keV]. The average energy of the neutrons inducing fission is 1.16 keV.

II. EXPERIMENTAL SETUP

The experiment has been performed at the GELINA facility of the JRC-Geel. The experimental setup, illustrated in Fig. 1, is located at a distance of about 9 m from the GELINA neutron source. Fission fragments are detected in a position sensitive twin ionization chamber (IC). This detector has been developed at JRC-Geel, and is described in detail in Ref. [4]. Essentially, it is a standard twin Frisch grid ionization chamber with the anode plates replaced by position sensitive readouts. It is capable of determining the fission axis orientation in space with a resolution of 7°, simultaneously with the fission fragment masses and energies.

Neutrons are detected in an array of proton recoil scintillators. The array consist of 19 NE213 equivalent BC-501 liquid scintillators, 3 paraterphenyl and 1 stilbene crystal scintillators. The detectors are placed in a quasi-spherical geometry around the center of the 235U-target at distance of about 50 cm. The actual position of the detectors relative to the IC has been determined with high
FIG. 1. Schematic representation of the experimental setup located at the GELINA facility. The \(^{235}\text{U}\)-target is placed inside the twin ionization chamber (IC), 9 m away from the neutron producing target. The neutron detectors are placed in a quasi spherical geometry around the IC at a distance of about 50 cm from the center of the \(^{235}\text{U}\)-target.

precision (±0.2 mm) using a ROMER arm [5] measuring device.

The data acquisition is based on wave-form digitizers, sampling the detector signals at 400 MSample/s with 14-bit resolution. A fission trigger derived from the charge induced on the central cathode of the IC, triggers the data acquisition. For every fission trigger digital wave-forms of all neutron detectors as well as the IC’s electrodes are stored on disk, together with time-stamp information, for off-line analysis. The time stamp is reset by every beam pulse from the GELINA and used to determine the incident neutron time-of-flight (ToF).

III. DATA ANALYSIS

A. PFN data

Events in the scintillation detectors corresponding to neutrons are selected by means of pulse-shape discrimination (PSD). The PFN energy is measured by means of the ToF technique, with a resolution of ~1 ns (FWHM). In addition to PFNs, fission is also accompanied by prompt fission \(\gamma\)-rays, which might be detected in the scintillation detectors as well. Most of the \(\gamma\)-emission takes place within a few ns after the instant of fission. Therefore, the range of high-energy neutrons is most sensitive to false events induced by \(\gamma\)-rays. The PSD is not able to give a clean discrimination between \(\gamma\)-rays and neutrons for pulse heights corresponding to small proton recoil energies. In order to reduce the background caused by the \(\gamma\)-emission a dynamic light-threshold [6] is applied.

Each detector in the SCINTIA array has been characterized using the PFNs from \(^{252}\text{Cf}(sf)\), with experimental setup and procedures described in Ref. [7]. To correct for the energy dependent detection efficiency and multiple scattering of neutrons on the surrounding materials, the setup is modeled with GEANT4. The simulation uses experimentally determined proton light output functions, for other recoil-particle species literature data are used [8, 9]. The Monte-Carlo model has been validated against the standard PFN spectrum [10] from the spontaneous fission decay of \(^{252}\text{Cf}\).

In Fig. 2 the \(^{235}\text{U}(n,f)\) PFN spectrum observed in this study, when selecting the incident neutron energy range \([0.3 \text{ eV}, 45 \text{ keV}]\), is compared to the spectrum from cold neutron induced fission determined by Kornilov et al. [11]. The two spectra are in quite close agreement, although the spectrum observed in the resonance region is slightly softer. The systematic uncertainty of the data points in Fig. 2 was estimated by a \(\chi^2\)-analysis of the variance of the results from individual detectors.
FIG. 2. (A) The prompt fission neutron spectrum in the laboratory frame compared to data from cold-neutron
induced fission from Kornilov et al. [11]. (B) The prompt fission neutron spectrum represented as a ratio to
a Maxellian with a temperature of 1.32 MeV.

B. Determination of fission fragment properties

The fission fragment mass and kinetic energy before neutron emission is obtained by means of the
well-established double kinetic energy (2E) technique, which relates the masses \(m_{1,2} \) and energies \(E_{1,2} \)
before neutron emission in a binary fission event according to

\[
m_{1,2} = m_{cn} \cdot \frac{E_{2,1}^*}{E_1^* + E_2^*},
\]

where \(m_{cn} \) is the mass of the compound nucleus undergoing fission. Under the assumption of isotropic
neutron emission from fully accelerated fragments, the energies before neutron emission \(E_* \) are related
to the energies after neutron emission \(E \) according to

\[
E_* = E \cdot \frac{m_*}{m_* - \overline{\nu}(m^*, \text{TKE})},
\]

where \(\overline{\nu} \) is the number of neutrons emitted by the fragment. The dependence of \(\overline{\nu} \) on mass and TKE
can only be derived from the data once the 2E-analysis is completed. As initial assumption we have
used the evaluated data on \(\overline{\nu}(m^*) \) from Wahl [12] and the parameterization

\[
\overline{\nu}(m^*, \text{TKE}) = \overline{\nu}(m^*) + \frac{\overline{\nu}(m^*)}{\overline{\nu}(m^*) + \overline{\nu}(m_{cn} - m^*)} \cdot \Delta_{\text{TKE}},
\]

\[
\Delta_{\text{TKE}} = \frac{\text{TKE}(m^*) - \text{TKE}_{E_{\text{sep}}}}{E_{\text{sep}}},
\]

where \(E_{\text{sep}} = 8.6 \text{ MeV/n} \) is the average energy necessary to emit a neutron [13]. The analysis was
later repeated using the results on \(\overline{\nu}(m^*) \) and \(E_{\text{sep}} = 8.51 \text{ MeV/n} \) derived from the data of the present
experiment. No significant changes in the results were observed between the two analyses. In the 2E-
technique the main contribution to the mass resolution is the neutron evaporation, since Eq. (2) only
holds on average. In this work the mass resolution is 4-5 u (FWHM), determined by comparing the
measured thermal mass yield to data from Ref. [14]. For events where neutrons and fission fragments
are detected in coincidence, an additional correction [15] for the recoil energy imparted to the fragment
is added to Eq. (2).
IV. EXPERIMENTAL RESULTS

A. Prompt fission neutron angular distributions

Most model calculations of the properties of PFNs are based on the assumption that the neutrons are emitted from the fragments after they have reached their terminal velocity. However, theoretical arguments have been raised asserting that at least a fraction of the neutrons are emitted during the scission process [16] and/or during the acceleration of the fragments [17, 18]. A large number of experiments have been devoted to investigate the source of prompt neutrons in detail. However, considering the variation of experimental results it is difficult to draw definitive conclusions. The experimental method used here, as well as in many earlier studies [19–21] of PFN emission in 235U(n,f), assumes that the neutrons are emitted from fully accelerated fragments. Hence, it is of great importance to investigate to what extent the experimental data support this assumption. In order to do so, we follow a procedure similar to that of Vorobyev et al. [22]. The energy–angle distribution of neutrons emitted from moving fragments when observed in the laboratory frame is

$$N(E_n, \theta) = N_L(\eta_L, \vartheta_L) \sqrt{\frac{E_n}{\eta_L}} + N_H(\eta_H, \vartheta_H) \sqrt{\frac{E_n}{\eta_H}},$$

where $N_{L,H}(\eta_{L,H}, \vartheta_{L,H})$ are the center-of-mass (c.m.) energy–angle distributions of neutrons from the light and heavy fragments, respectively. The neutron energies in the c.m. frame $\eta_{L,H}$ can be derived from experimental observables in the laboratory frame; light (L) and heavy (H) fragment energies $E_{L,H}$ and masses $m_{L,H}$, neutron energy E_n and angle θ between the neutron’s and the light fragment’s directions of motion

$$\eta_L = E_n + E_L \frac{m}{m_L} - 2 \sqrt{E_n E_L \frac{m}{m_L} \cos \theta},$$

$$\eta_H = E_n + E_H \frac{m}{m_H} + 2 \sqrt{E_n E_H \frac{m}{m_H} \cos \theta},$$

where m is the mass of the neutron. For the purpose of the model a single fragmentation is used, with $E_L \frac{m}{m_L} = (1.02 \pm 0.01)$ MeV and $E_H \frac{m}{m_H} = (0.491 \pm 0.01)$ MeV taken as averages from the experimental data. Under the assumption of isotropic emission from the fully accelerated fragments, only the neutron spectra in the c.m. frame are unknown. They are determined from the experimental data by selecting small angles in the laboratory frame, where the contribution of neutrons from the complementary fragment is the smallest. Neutrons detected at angles smaller than 12$^\circ$ relative to the motion of the light and heavy fission fragments are selected. The observed laboratory spectra for these selections are transformed into the c.m. frame of the respective fragment and corrected for the small contribution of neutrons from the complementary fragment. Each of the spectra has been fitted with a linear superposition of a Maxwellian and a Watt spectrum shape. The fitted shapes are then used to calculate the spectrum as a function of the angle between the light fission fragment direction and the detected neutron, according to Eq. (4). In Fig. 3 the zeroth (A) and the first (B) moments of the calculated and experimentally observed spectra as a function of $\cos \theta$ are compared. The agreement is fair, although a clear underestimation of the experimental data is evident at large angles with the fission axis. The underestimation amounts to 2.5% of the total neutron yield. The description of the experimental data could be improved by assuming a small anisotropy in the c.m. frame [22]. However, we did not include an anisotropy term in the evaluation of the laboratory data as the angular distribution observed in the c.m. frame does not allow for this degree of freedom. Note that the uncertainties given in Fig. 3 are statistical only, evaluation of the associated systematic uncertainties are on-going.

The complete experimental determination of all relevant kinematic parameters allows the transformation from the laboratory frame of reference into the rest frame of the fully accelerated fission fragments. This transformation is, however, complicated by the fact that for each laboratory angle only the sum of contributions from the two fission fragments is observed. Thus, an unknown contribution must first be subtracted from any observed distribution. Fortunately, the contribution of neutrons emitted from the fragment flying away from the neutron detector is small [23]. Therefore, in
FIG. 3. (A) Angular distribution of prompt neutrons integrated over all neutron energies. (B) Average neutron energy as a function of $\cos \theta$. The full lines represent the result of the model calculation.

a first approximation it is assumed that all neutrons that are detected with a c.m. angle smaller than 90° originate from the fragment directed towards the neutron detector. The resulting distribution is then used to calculate the disturbing component from the complementary fragment. Using this procedures, the angular distribution of prompt neutrons in the rest frame of the fully accelerated fragments has been determined. Figure 4 shows the angular distribution integrated over all c.m. neutron energies and all fission configuration, i.e. no selection in mass or TKE has been made. The result has been fitted with a second order Legendre polynomial. Obviously, the result supports isotropic emission in the c.m.-frame. This does, however, not exclude neutron from emission sources other than fully accelerated fragments, due to the selection of events with $\theta_{\text{c.m.}} > 90^\circ$. The selection implies that events with laboratory neutron energies smaller than the fragment energy per nucleon are not taken into account.

FIG. 4. The angular distribution of prompt neutrons in the c.m.-frame integrated over all neutron energies and fission configurations. The full line is the best fit of a second order Legendre polynomial.

B. Average neutron multiplicities

The average neutron multiplicity as a function of the fragment mass is shown in Fig. 5 (A). For comparison, experimental data from Refs. [19, 20] are also shown in the figure. The general shape is reproduced in this work, however the minima around mass number \sim80 u for the light fragments and \sim130 u for the heavy fragments appear more pronounced in the present data. The average neutron multiplicity per fission is shown as a function of the heavy fragment mass in Fig. 5 (B). A pronounced minimum close to heavy fragment mass $A_H \sim$132 u observed.
In Fig. 6 the average neutron multiplicity per fission is plotted as a function of the fragment TKE. As expected, a close to linear dependence is observed, except for TKE \(\lesssim 145 \) MeV. A least square fit results in \(-\partial TKE/\partial \nu = 12.0 \) MeV/\(\nu \). This value is substantially lower than the values 16.7 – 18.5 MeV/\(\nu \) determined in earlier studies, performed at thermal incident neutron energy [19–21, 24]. Data from Refs. [19–21] are also included in Fig. 6(A). By studying the fission fragment TKE distributions from Refs. [19–21] it has been found that these studies suffer from substantial resolution broadening. The broadening also affects the correlation with detected neutrons, which explains the strong difference between the present data and the literature data. This conclusion was already drawn form a subset of the present data, and a more detailed discussion of this has been published in Ref. [25].

A comparison of the experimental result for average neutron multiplicity per fission \(\nu_{T}(\text{TKE}) \) with different model calculations, taken from a recent review of available fission fragment deexcitation models [1, 26], is shown in Fig. 6(B). The different models presented in Ref. [1] agree well with each other. Therefore, not all of them are included in the figure. It is clear that the model calculations are in much better agreement with the present data set than with earlier experiments.

V. CONCLUSION

A multi-parameter experiment on correlations between the properties of fission fragments and PFNs in the reaction \(^{235}\text{U}(\text{n},\text{f})\) for an incident neutron energy range [0.3 eV, 45 keV], with a mean neutron
energy of 1.16 keV, has been presented. The laboratory angular distribution of prompt neutrons have been compared with a model calculation based on isotropic emission from fully accelerated fragments. The model agrees fairly well with the experimental data, however the model calculation does underestimate the neutron yield at large angles with the fission axis. The underestimation amounts to 2.5 % of the total neutron yield. Results on average neutron multiplicities in correlation with fission fragment mass and TKE show significant differences to earlier studies on this reaction, induced by thermal neutrons. The sawtooth shape of the average neutron multiplicity per fragment show more pronounced minima at $A \approx 130$ and $A \approx 80$. The TKE dependence of the neutron multiplicity per fission shows an inverse slope ∂TKE/$\partial \nu$ approximately 35% weaker than observed in earlier studies [19–21, 24]. The difference can be attributed to improved fission fragment TKE resolution in the present experiment. The present result for the average neutron multiplicity as a function of TKE is in good agreement with model calculations [1, 26].

[18] V.P. Eismont, Atomnyia Energiya 19, 113 (1965)

