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ABSTRACT 
 Machine learning is one of the popular methods for analyzing and processing complex 
data. Despite shown good accuracy, Appling it in the scientific field is hindered by the 
unpredictable neural networks behavior. Thus, incorrect results can be able caused by 
applying neural networks to separate particles in scintillator. Therefore, it was necessary to 
compare series different neural networks architectures and to find out the feasibility of their 
application to the task of separating particles according to the shape of the pulse. 
 

1. INTRODUCTION 
 

Mostly, gamma radiation goes with neutron radiation. For this reason, ability of most 
organic scintillators to separate signals by pulse shape is very important. At nowadays, to 
separate the signals by pulse shape uses both digital and analog methods. At the same time, 
there is the possibility of using artificial neural networks (ANN). A number of studies have 
shown good results of using ANNs to solve this problem [1‒3, 5‒6]. However, in the most 
works published on this topic, there are no sound estimates of the quality of the separation of 
signals in relation light output. Comparison of different architectures has not done. 

The purpose of this work was to train several types of ANNs, to obtain a reasonable 
estimate of the recoil protons false count rate and the efficiency of registration of recoil 
protons. 

 

2. MATERIALS AND METHODS 
 

In this work, we had used early-obtained in [6] data. In [6] neutrons spectrum of 252Cf 
spontaneous fission was measured by using time-of-flight method.  To detect neutrons we 
used crystal stilbene with size 2×2 cm. This scintillator was paired with PMT EQ Enterprise 
9813 QB. An offset voltage of 1150 V was applied to it. Thin 252Cf layer was placed on flat 
parallel ionizing chamber cathode. Chamber inter electrode gap was 2 mm. Signals form 
ionizing chamber gained in charge sensitive amplifier. PMT signals and chamber signals 
digitized with Ultraview AD14-500MHz and wrote together. Last dynode was source of 
trigger signal accumulated about 3.8 million events.  

Supervised learning is main method to train ANN. In a few words, ANN takes sample of 
data and configures inherent state to produce required data, for example, event class. For this 
training method is necessary to obtain training data set which, in our case, represented as 
labeling signals set. Signals labeling was performed by correlation analysis [6]. The 
separation parameter R is determined from eq.1: 

,                  (1) 

where A – signal area, f – analyzed signal, g – averaged electron signal. 



For low light-output region separation curve was calculated by rule that false recoil 
protons number was less than 1%. For higher energy region, separation curve was passed 
through the intersection point of the particles distributions. The signals had length of 200 
channels. Label “0” corresponded to recoil protons, “1” – electrons. Each signal was 
normalized to the maximum amplitude. Besides, for MICNN were calculated three additional 
signals: smoothed, differentiated, cumulative sum for each sample. 

 
Table 1. Train set composition. 

Energy window, keVee Recoil protons Electrons 
45 – 124 1000  1000  
124 – 520 1000  1000  
520 – 915   500    500  
915 – 1311   500   500 
 

ANNs was performed by using the Python libraries Keras and Tensorflow [5, 9]. 
The following neural networks (fig.1) were investigated: single-layer perceptron (Per), 
multilayer perceptron (MLP), convolutional neural network (CNN), multi-input convolutional 
neural network (MICNN) [10], recurrent neural network (RNN). All layers in ANNs had 
activation function “ReLU”, besides LSTM [4] layer and output layer. Output layer of each 
ANN have sigmoid activation function. To avoid overfitting was used random weight zeroing 
(Dropout). Adam (adaptive moment estimation) optimizer we used to train ANNs. The loss 
function was mean squared error. 
 

 

Figure 1. ANNs architectures. 
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Figure 2. Example of two-dimensional              Figure 3. Correlation analysis for separated by 
spectra for MICNN.           MICNN particles at 45 keVee. 

 

2.1 Separation quality 

To calculate false count rate of recoil protons (Fig. 4) were used “clear” signals from 
electrons obtained using information about time-of-flight. The proportion of background 
neutrons in the instant gamma peak was about 4.5·10-5. 
 False count rate is: 

 ,       (2) 

NFP – number of false identify protons, NTE – number of true identify electrons.  
Registration error of recoil protons was founded by eq. 3: 

,       (3) 

f – false count rate of recoil protons, Ap.ap – number of recoil protons obtained from 
approximation of cuts two-dimensional spectrum for correlation analysis, Ae.ap – number of 
electrons obtained from approximation of cuts two-dimensional spectrum for correlation 
analysis, Ap.NN – number of recoil protons obtained by ANN. 
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Figure 4. False count rate for ANNs. 



All neural networks have similar values of false protons count rate and lost protons above 85 
keVee (Figs. 4, 5). However, in low energy range the situation is changing. Complicated 
neural networks much less fault in definition particle type according to simple neural 
networks that mostly used in the earlier studies. At the same time registration efficiency of 
neutrons for complicated neural networks worse than for simple neural networks. 

45 85 124
0

2

4

6

8

Fa
lse

 co
un

t ra
te 

of 
rec

oil
 pr

oto
ns

, %

Light output, keV e.e.

 MLP
 Per
 CNN
 MICNN
 RNN

 

Figure 5. Proportion of lost recoil protons. 

2.3 Performance 

Processing speed was measured for kernels of each algorithm. For neural network was 
measured time for front propagation, CI – integrals calculation, correlation analysis – 
parameter R (eq.1) calculation. The test was carried out on PC that had the following 
characteristic: four-threaded Intel core i3-3220 3.3 GHz processor, DDR3 4 GB RAM, 
windows 7x64.  

Table 2. Processing time for 1000 samples. 

Algorithm time, ms  
Correlation analysis 37.8 
Charge integration 1.3 
Per 3.9 
MLP 6.6  
CNN 65.5 
MICNN 181.7  
RNN 374.8  

 

CONCLUSION 

A reasonable estimate of the false identification of neutrons by neural networks has 
been obtained. Was compared the several neural network architectures. The comparison was 
made of the operation speed of some standard digital algorithms for separating signals 
according to the pulse shape and the presented artificial neural networks. By the level of false 



classification, convolutional neural networks showed better results, but the calculations take 
longer than classical methods. 
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