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Abstract

The effect of the acceleration of a nucleus on the neutron states is studied in the frame
of the independent-particle nuclear shell model. For this we solve numerically the time-
dependent Schrödinger equation, with a moving mean-field of Woods-Saxon type. The
time evolution of a neutron states at the Fermi level is calculated for 236U and acceleration
parameter A=0.5 (in 1044 [fm/sec2]). It is roughly the acceleration during the Coulomb
repulsion of two 236U nuclei when they are 20 fm apart. We keep this acceleration constant
for 10−21 sec before we switch it off (A=0) and follow the wave packet for another 10−21

sec. During the acceleration, the wave function oscillates with increasing amplitude until
it escapes, mainly in the direction opposite to the motion of the nucleus. The mean value
of its energy (in the nuclear system) increases from -4.80 MeV to -3.15 MeV and 12% of
the wave packet leave the nucleus. During the uniform motion, the wave packet continues
to oscillate and to escape at a lower rate: an extra 2%. We repeated the calculations for
two neighbouring states and found the emission rate to depend strongly on the position
of the neutron state with respect to the Fermi energy. Finally, the effect of the nuclear
deformation on the acceleration induced neutron emission is studied. In this case the
period of oscillation is larger and the amplitude smaller. The angular distribution with
respect to the direction of motion is also different: it has, in the nuclear system, an intense
component almost perpendicular to the deformation axis.

1. Introduction

What if, like a fully-filled water tank, a nucleus will spill its less bound nucleons when
accelerated? Most probable this could happen to neutrons since, contrary to protons,
they are not protected by a Coulomb barrier. In case the answer is ”yes”, we are dealing
with a new nuclear process. To give a first answer to this captivating question we choose
a simple framework: the independent particle shell model [1]. We therefore solve the
time-dependent Schrödinger equation with a moving mean-field of Woods-Saxon type
and study the change in the neutron eigenstates during 10−21 sec of constant acceleration
followed by 10−21 sec of constant velocity. This scenario is borrowed from the design of a
linear accelerator [2].

The motion of a quantum particle in a moving one-dimensional potential well has
been already studied in the field of control systems. Controlability is a mathematical
concept that, in very generals terms, means the ability to do whatever we want with a
given dynamical system; in particular, to transfer a quantum system from any initial state
to any final state [3, 4] or to manipulate the position of a nano-particle using dynamical
potential traps [5].



2. Formalism

In our case, we consider a neutron in a moving nuclear potential that has axial sym-
metry. It is represented by a wave function solution of the Schrödinger equation

i~
∂Θ(ρ, z, t)

∂t
= H(ρ, z, t)Θ(ρ, z, t), (1)

where H is the single-particle Hamiltonian.
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α(t) describes the displacement of the potential in time along the z axis. Λ is the projection
of the orbital angular momentum on the symmetry axis. For simplicity the spin-orbit term
is neglected.

By the Liouville transformation Φ = ρ1/2Θ, the first derivative with respect to ρ from
H is removed, resulting a simplified Hamiltonian H of the form:

H = −
~
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One arrives to the equation

i~
∂Φ(ρ, z, t)

∂t
= H(ρ, z, t)Φ(ρ, z, t). (2)

To solve this equation, a transformation of both the variable and the function from the
non-inertial (laboratory) to the inertial (nuclear) system is convenient. It avoids an in-
terpolation of the potential between the grid points at each time step.

We will explain this transformation on the 1-D TDSE:

i~
∂Φ(t, z)

∂t
= −

h2

2m

∂2Φ(t, z)

∂z2
+ V (z − α(t))Φ(t, z) (3)

We go in the nuclear frame by the following changes of the variable z → q and of the
function Φ → Ψ [6]:

q = z − α(t), Φ(t, z) = exp(u)Ψ(t, q) (4)

where

u = ib

(

zα̇ − αα̇ +
1

2

∫ t

0

α̇2(t′)dt′
)

.

By taking b = m
~
, it can be shown that Eq.(3) will be transformed in

i~
∂Ψ(t, q)

∂t
= −

h2

2m

∂2Ψ(t, q)

∂q2
+ V (q)Ψ(t, q) + mqα̈(t)Ψ(t, q). (5)

To eliminate the linear term in q (which tends to ∞ as q → ∞), a further function
transformation is performed [7]

Ψ(t, q) = exp

(

−i
λ

~

)

χ(t, q) (6)



with

λ(t, q) = qm

∫ t

0

α̈(t′)dt′ = qβ(t).

In our particular case α(t) = 1

2
At2.

α̇ = At, α̈ = A, λ = Bqt, B = mA

u = ib

(
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1

3
A2t3

)

and the equation for χ is:
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+ V (q)χ(t, q). (7)

The advantage of these transformations is that they lead to equations in which the po-
tential depends on a time-independent variable, the dependence on α(t) being transferred
in the coefficients of Eqs.(5),(7).

3. Computational aspects

We work with the variables ρ and q on a finite numerical grid: [0,160]x[-256,256], ∆ρ =
∆q =1/8 fm, ∆t =1/128 ×10−22 sec. The equations (5) and (7) are solved numerically
by the Crank-Nicolson method. One obtains a linear system which is solved by a routine
based on the Strong Implicit Procedure [8]. As initial solutions (at t = 0) we consider
eigenfunctions of the original Hamiltonian.

The propagation in time is done in two steps. We consider a quadratic α(t) and use
Eq.(7) for 10−21 sec. Then we consider a linear α(t) and use Eq.(5) without the α̈ term
for another 10−21 sec. At any time, by performing the inverse tranformations, we can
retrieve the solution Φ(ρ, z, t) of the original equation. For the 1st step we choose the
constant acceleration A=0.5[1044fm/sec2] resulting a constant velocity v=5[1022fm/sec]
for the 2nd step.

4. Results

As an example we take spherical 236U and study 3 neutron states with Λ=0 around
the Fermi level. The parameters of the Woods-Saxon potential are fitted to single-particle
and single-hole states in the 208Pb region [9].

Fig.1 shows the result for the 14th eigenstate laying at -4.8 MeV. For T > 0, the
wave packet exhibits a changing asymmetry with respect to the ρ axis indicative of an
oscillation. In fact, we are dealing with an oscillation over the usual vibration of a quasi-
stationary state. A similar vibration causes the barrier asaults in the Gamow picture of
α decay [10]. The presence of the neutron inside the nucleus, measured by Nin, decreases
from 1.00 (at T=0) to 0.88 (at T=10). A neutron, initially occupying this state, has
therefore 12% chance to be emitted during the acceleration phase. For T > 10 the
oscillatory motion continues. At T=20 Nin reaches an even lower value (0.86) because at
T=10 the wave packet has short unbound tails which inevitably leave the nucleus.

The most probable direction of emission is 180◦ with respect to the displacement of
the nucleus as in classical mechanics. There is however a weaker branch at ≈ 150◦ which
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Figure 1: Time evolution of |Φ0

14
|2 during (left) and after (right) acceleration for spherical

236U . Nin is the norm inside the dotted circle defined by V0/100. T is the time in 10−22

sec.

has a quantum origin. It is known that the tunneling path of a metastable state is mainly
dictated by its quantum numbers [14, 15]. In other words the emission preserves the
spatial distribution of the respective state. Hence we expect a 2nd peak at 125◦ in the
nuclear system which translates into an emission at 150◦ in the laboratory system.

Figs. 2 and 3 show the time dependence of two other neutron states with energies
below (-8.3 MeV) and above (-3.4 MeV) the Fermi level respectively. The wave function
with lower energy oscillates during both regimes: quadratic and linear α(t). It doesn’t
however succeed to escape: its presence inside the nucleus is practically unchanged. On
the contrary, 49% of the wave function with higher energy is emitted, in the same interval
of time, through strong oscillations. Predictably, the emission starts earlier and is more
intense. As for Φ0

14
, there are also two directions of emission: one intense at 180◦ and one

weak at an angle between 180◦ and 90◦.
For a better understanding of the physics involved, we divide the total energy in the

laboratory system in significant terms:

〈Φ|H|Φ〉 = −
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V (ρ, q)|Ψ|2dρdq.

(8)
The 1st term is the average kinetic energy in the nuclear frame. The 2nd term reduces

to mα̇2/2; it is the extra kinetic energy due to the velocity of the potential. The 3rd
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Figure 2: The same as in Fig. 1 but for Φ0
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Figure 3: The same as in Fig. 1 but for Φ0
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.

term reduces to α̇ < p > where < p > is the average momentum in the nuclear frame.
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Figure 4: The five terms which form the neutron energy in the laboratory system.
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It represents the variation of the neutron energy due to the interaction with the moving
wall of the potential; equivalent to the ”one-body” dissipation [11]. The last two terms
are the average centrifugal and nuclear potentials respectively.

These 5 terms as well as their sum are plotted in Fig.4 as a function of time for the
neutron state close to the Fermi energy. Their variation during acceleration is explained
by two facts: a) the emitted fraction of the wave packet is more and more present in the
nuclear surface or even outside the nucleus. This e.g., diminishes E1 and boosts E4 and
E5. b) the emission is accompanied by an oscillatory motion. From the variation of E2,
one observes that our neutron reaches 13 MeV in 10−21 sec. In a linear accelerator a 236U
ion can easily attain the same velocity but in a much longer time.

After T=10 there is only this oscillatory motion left. The sum E1+E4+E5 i.e., the
neutron energy in the nuclear frame, is constant and the oscillations of E are due only to
E3 as clearly seen in Fig.5.
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Figure 6: Time evolution of |Φ0

17
|2 during (left) and after (right) acceleration for the shape

isomer (deformation parameter ǫ=0.52) of 236U . Nin is the norm inside the dotted ellipse
defined by V0/100. T is the time in 10−22 sec.

Finally we study the effect of nuclear deformation on the neutron emission due to
acceleration of the nucleus along the deformation axis. For this we describe the nuclear
shape by a pure Cassini oval with deformation parameter ǫ=0.52. It is the shape isomer
of 236U [16]. The results for two neutron states, one below and one above the Fermi level,
are presented in Figs. 6 and 7 respectively. The emission probability is again larger in
the latter case: Nin = 0.39 vs 0.77. One can also notice that the emission at angles
smaller than 180◦ to the z-axis is much intenser than in the previous cases. It is because
a quasi-stationary state in a deformed nucleus tunnels most probably pependicularly to
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Figure 7: The same as in Fig.6 but for |Φ0

17
|2.

the deformation axis [17], irrespective if the barrier is lower or higher along this direction.
It is what happens here: the emission occurs at 90◦ in the nuclear system. Due to
the displacement of the nucleus however, in the laboratory system, the emission occurs at
slightly larger angles (≈ 110◦). Hence there is qualitative difference between spherical and
strongly deformed nuclei: in the latter case, the direction imposed by quantum mechanics
competes in intensity with the classically expected direction of emission.

5. Concluding remarks

A similar emission takes place during the slowing down (A<0) of a projectile when
it approaches a target. Among possible effects, an increase of the neutron-transfer cross
section is expected. The value chosen (A=0.5) is larger than the acceleration during the
Coulomb repulsion of two equal fission fragments from 236U separated by Dcm= 20 fm
(A=0.13) but comparable with that attained during the collision of two 236U nuclei at
the same distance of approach (A=0.52). In conclusion, there is probably no acceleration
induced excitation of the fission fragments during their separation. On the other hand, a
heavy projectile is expected to become excited (even to emit neutrons) when it approaches
a heavy target or moves away from it. However, the acceleration produced in Coulomb
interactions is not constant (it depends on Dcm) and a high level cannot be maintained for
10−21 sec, a long time at the scale of the above mentioned processes. For a quantitative
answer a dedicated study is necessary.

The process of acceleration induced neutron emission has similarities with the realease
of neutrons at scission i.e., during the last stage of nuclear fission. They are both due to a
fast change of the potential in which they move that transforms each neutron state into a



wave packet with components in the continuum [12, 13]. In the case of scission neutrons
however, it is the shape of the potential and not its position that changes.
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