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I. INTRODUCTION 

Study of resonances in the scattering problem of light nuclei has been carried out using 
various methods, one of which is the complex scaling method [1‒2]. It is possible to 
investigate the resonance contributions and to obtain a deep understanding of resonance 
structure by separation of a scattering quantity. Suzuki et al. [3] showed that scattering phase 
shifts can be calculated from the continuum level density, which is expressed using the 
complex scaled Green’s function.  

We apply the complex scaling method to the calculation of scattering phase shifts and 
extract the contributions of resonances in a phase shift. The decomposition of the phase shift 
is shown to be useful in understanding the roles of resonant and non-resonant continuum 
states. We apply this method to the two-body alpha+nucleon systems. We discuss the explicit 
relation between the scattering phase shifts and complex-energy eigenvalues in the complex 
scaling method via the continuum level density. The results provide us with deeper 
understanding of the role of resonant states characterized by the widths described as an 
imaginary part of the eigen-energy.  

 
II.THEORETICAL FRAMEWORK 

 A. Complex Scaling Method 

In the complex scaling method the relative coordinate is rotated as 𝑟𝑟 ⟶ 𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖 in the 
complex coordinate plane. Therefore, the Schrödinger equation  

                               𝐻𝐻�|𝛹𝛹〉 = 𝐸𝐸|𝛹𝛹〉     (1) 
is rewritten as  

  𝐻𝐻�(𝜃𝜃)|𝛹𝛹𝑖𝑖〉 = 𝐸𝐸𝑖𝑖|𝛹𝛹𝑖𝑖〉,                (2) 
 

where 𝐻𝐻�(𝜃𝜃) and 𝛹𝛹𝑖𝑖 are the complex scaled Hamiltonian and wave function, respectively. 
The 𝜃𝜃 is scaling angle being a real number, 𝑈𝑈(𝜃𝜃) operate on a function 𝛹𝛹𝑖𝑖, that is  

 𝛹𝛹𝑖𝑖 = 𝑈𝑈(𝜃𝜃)𝛹𝛹(𝑟𝑟) = 𝑒𝑒
3
2𝑖𝑖𝑖𝑖𝛹𝛹(𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖).     (3) 

 



The eigenvalues and eigenstates are obtained by solving the complex scaled Schrödinger 
equation Eq.(2). The eigenvalues of resonance states are found as 𝐸𝐸𝑖𝑖 = 𝐸𝐸𝑟𝑟 − 𝑖𝑖𝛤𝛤𝑟𝑟/2, where 𝐸𝐸𝑟𝑟 
is resonance energy and 𝛤𝛤𝑟𝑟 is width of the resonant state. More detailed explanation of the 
complex scaling method is given in Ref.[2]. 

To solve the eigenvalue problem of Eq. (2), we employ the Gaussian basis functions 
given as: 

 𝜙𝜙𝑖𝑖(𝑟𝑟) = 𝑁𝑁𝑙𝑙(𝑏𝑏𝑖𝑖)𝑟𝑟𝑙𝑙exp �− 1
2𝑏𝑏𝑖𝑖

2 𝑟𝑟2� 𝑌𝑌𝑙𝑙𝑙𝑙(�̂�𝑟),    (4) 

where the range parameters are given by a geometric progression as 𝑏𝑏𝑖𝑖 = 𝑏𝑏0𝛾𝛾𝑖𝑖−1; 𝑖𝑖 = 1 ·· ,𝑁𝑁, 
and 𝑁𝑁𝑙𝑙(𝑏𝑏𝑖𝑖) is the normalization factor. We take 𝑁𝑁 =  60 and employ the optimal values of 
𝑏𝑏0and 𝛾𝛾so as to obtain stationary solutions. All results are obtained with 𝜃𝜃 =  15°. 
 

B. Continuum Level Density and Phase Shift 

The continuum level density ∆(𝐸𝐸) is given as 
 ∆(𝐸𝐸) = − 1

𝜋𝜋
Im{Tr[𝐺𝐺+(𝐸𝐸) − 𝐺𝐺0+(𝐸𝐸)]},    (5) 

where 
𝐺𝐺+(𝐸𝐸) = (𝐸𝐸 + 𝑖𝑖𝑖𝑖 − 𝐻𝐻)−1,  
𝐺𝐺0+(𝐸𝐸) = (𝐸𝐸 + 𝑖𝑖𝑖𝑖 − 𝐻𝐻0)−1 

 
are the full and free Green’s functions, respectively. In this study, the Hamiltonian H and H0 
are transformed using the complex scaling method. 

The continuum level density is related to the scattering phase shift 𝛿𝛿(𝐸𝐸), it can be 
expressed in the following form in the single channel case: 

 ∆(𝐸𝐸) = 1
𝜋𝜋
𝑑𝑑𝑑𝑑(𝐸𝐸)
𝑑𝑑𝐸𝐸

.     (6) 

Using this relation, we can obtain the phase shift as a function of the eigenvalues in the 
complex scaled Hamiltonian by integrating the continuum level density. 

When we expand the wave functions in terms of the finite number N of the basis 
states, the discretized eigenstates are obtained with number 𝑁𝑁 and the level density can be 
approximated as in [4]: 

∆(𝐸𝐸) ≈ ∆𝑖𝑖𝑁𝑁(𝐸𝐸) =

       − 1
𝜋𝜋

Im �∑ 1
𝐸𝐸+𝑖𝑖0−𝐸𝐸𝑏𝑏

𝑁𝑁𝑏𝑏
𝑏𝑏=1 + ∑ 1

𝐸𝐸−𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟+
𝑖𝑖Γr
2

𝑁𝑁𝑟𝑟𝜃𝜃
𝑟𝑟=1 + ∑ 1

𝐸𝐸−𝜖𝜖𝑐𝑐𝑟𝑟+𝑖𝑖𝜖𝜖𝑐𝑐𝑖𝑖
𝑁𝑁𝑐𝑐𝜃𝜃
𝑐𝑐=1 −∑ 1

𝐸𝐸−𝜖𝜖𝑘𝑘
0𝑟𝑟+𝑖𝑖𝜖𝜖𝑘𝑘

0𝑖𝑖
𝑁𝑁
𝑘𝑘=1 �,                     (7) 

where 𝑁𝑁 =  𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑟𝑟𝑖𝑖 + 𝑁𝑁𝑐𝑐𝑖𝑖  is the total number of 𝑁𝑁𝑏𝑏 (bound states), 𝑁𝑁𝑟𝑟𝑖𝑖  (resonance states) 
and 𝑁𝑁𝑐𝑐𝑖𝑖 (continuum states) solutions. Then, we can obtain the phase shift: 
 
𝛿𝛿𝑖𝑖𝑁𝑁(𝐸𝐸) = 𝑁𝑁𝑏𝑏𝜋𝜋 + ∑ �− cot−1 �𝐸𝐸−𝐸𝐸𝑟𝑟

𝑟𝑟𝑟𝑟𝑟𝑟

Γ𝑟𝑟/2
��𝑁𝑁𝑟𝑟𝜃𝜃

𝑟𝑟=1 + ∑ �− cot−1 �𝐸𝐸−𝜖𝜖𝑐𝑐
𝑟𝑟

𝜖𝜖𝑐𝑐𝑖𝑖
��𝑁𝑁𝑐𝑐𝜃𝜃

𝑐𝑐=1 − ∑ �− cot−1 �𝐸𝐸−𝜖𝜖𝑘𝑘
0𝑟𝑟

𝜖𝜖𝑘𝑘
0𝑖𝑖 ��𝑁𝑁

𝑘𝑘=1 ,    (8) 

       
where 𝐸𝐸 ≥  0. When we define 𝛿𝛿𝑟𝑟 , 𝛿𝛿𝑐𝑐 and 𝛿𝛿𝑘𝑘 as 

 cot 𝛿𝛿𝑟𝑟 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝐸𝐸
Γ𝑟𝑟/2

,  cot 𝛿𝛿𝑐𝑐 = 𝜖𝜖𝑐𝑐𝑟𝑟−𝐸𝐸
𝜖𝜖𝑐𝑐𝑖𝑖

,  cot 𝛿𝛿𝑘𝑘 = 𝜖𝜖𝑘𝑘
0𝑟𝑟−𝐸𝐸
𝜖𝜖𝑘𝑘
0𝑖𝑖 ,      (9) 

respectively, we can write the phase shift as  



𝛿𝛿𝑖𝑖𝑁𝑁(𝐸𝐸) = 𝑁𝑁𝑏𝑏𝜋𝜋 + ∑ 𝛿𝛿𝑟𝑟
𝑁𝑁𝑟𝑟𝜃𝜃
𝑟𝑟=1 + ∑ 𝛿𝛿𝑐𝑐

𝑁𝑁𝑐𝑐𝜃𝜃
𝑐𝑐=1 − ∑ 𝛿𝛿𝑘𝑘𝑁𝑁

𝑘𝑘=1 .              (10) 

The geometrical indications for 𝛿𝛿𝑟𝑟 , 𝛿𝛿𝑐𝑐and 𝛿𝛿𝑘𝑘 are given for two energy cases, larger or smaller 
than the real parts of the eigen-energies 𝐸𝐸𝑟𝑟, 𝜀𝜀𝑐𝑐and 𝜀𝜀𝑘𝑘, as shown in Fig. 1. The phase shift 𝛿𝛿𝑟𝑟 
for the resonances is the angle of the 𝑟𝑟-th resonant pole measured at the energy 𝐸𝐸 on the real 
energy axis. At 𝐸𝐸 = 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, we have 𝛿𝛿𝑟𝑟 =  𝜋𝜋/2 for every resonant pole. In addition,  𝛿𝛿𝑟𝑟 =
tan−1(Γ𝑟𝑟/2𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) > 0 at 𝐸𝐸 =  0 and 𝛿𝛿𝑟𝑟 =  𝜋𝜋 at 𝐸𝐸 =  ∞, for each resonance. Similarly phase 
shifts from continuum terms including the asymptotic part, 𝛿𝛿𝑘𝑘, are given by the angles of the 
discretized continuum energies. At 𝐸𝐸 =  ∞,  the continuum terms of the phase shifts go to 
−(𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑟𝑟𝑖𝑖)𝜋𝜋  because of the relation 𝑁𝑁 = 𝑁𝑁𝑏𝑏 + 𝑁𝑁𝑟𝑟𝑖𝑖 + 𝑁𝑁𝑐𝑐𝑖𝑖 . 
 

III. RESULTS AND DISCUSSIONS 

In our previous works [5-6], we proposed a new method to get information of the pole 
position of the virtual state applying the continuum level density, the phase shift obtained in 
the complex scaling method. Based on the proposed method, we discuss the contribution of 
each state into the scattering phase shifts calculating the decomposed phase shifts. In this 
work, we choose two-body two mirror nuclei for calculation of decomposed phase shifts. The 
KKNN (Kanada, Kaneko, Nagata, Nomoto) [7] potential is used for the effective nucleon-
nucleon interaction of α+n and α+p systems. 

 
Fig. 1. In the left hand side: the calculated eigenvalue distribution on the complex energy 
plane for  Jπ= 3/2− of 5He. In the right hand side: the scattering phase shifts of 5He at the  

Jπ= 3/2− and 1/2− states for θ =200. The calculated phase shifts are displayed as solid curves 
and the experimental data are given by open circles. 

 
At the first step, we calculate the scattering phase shifts and compared it with measured 

data. The calculated eigenvalue distribution on the complex energy plane and scattering 
phase shifts for the low-lying 3/2− and 1/2− states of α+n system are shown in Fig. 1. We can 
see from Fig. 1, our calculated scattering phase shifts well reproduce the measured data [8] in 
the low-lying states. The same trend is obtained on its mirror α+p system, too. 
 

a) 

b) 



 
Fig. 2. Upper panel: the decomposition of scattering phase shifts of α–p (5Li) system for the 
Jπ = 1/2+; 3/2-; 1/2- states and middle panel: the decomposition of continuum level densities. 
The dashed and dotted lines represent the contributions of resonance and continuum terms, 

respectively. The solid lines display total scattering phase shifts or total continuum level 
densities. Lower panel: the distributions of eigenvalues are displayed in the complex energy 

plane. The diamond displays the resonance pole. 
 
In the next step, we calculate the decomposed phase shifts by selecting the energy states and 
analyze its contribution into the scattering phase shifts. In Fig. 2, the energy eigenvalue 
distribution on the complex energy plane, decomposed phase shifts and continuum level 
density for the Jπ=3/2− state of 5Li system is shown. The resonance phase shift of 3/2- 
increases rapidly due to the small decay width. Although 1/2- has a larger width, the phase 
shift of 1/2- shows a clear resonance behavior beyond π/2. The continuum phase shifts of both 
states are very similar. This trend seems due to the same p-wave scattering and a small effect 
of the ℓ ∙ 𝑠𝑠 force to the background states. The property of the scattering phase shifts is 
determined from a sum of resonance and continuum terms. Therefore, the observed 
resonances depend on not only resonant states as poles but also the contribution from the 
non-resonant continuum states. 
 
 
 
 



IV. SUMMARY 
Applying Green’s function, we can precisely extract the contributions of resonance and 
continuum terms from the total continuum level density. This analysis clarifies the physical 
role of resonances and non-resonant continuum states in the observables. We have also 
shown the application of the complex scaling method to the calculation of the decomposed 
continuum level density and the decomposed phase shifts. The role of resonance poles on the 
phase shifts and continuum level densities are discussed. 
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