
NEUTRON RESONANCES IN THE GLOBAL CONSTITUENT QUARK MODEL

S.I. Sukhoruchkin, Z.N. Soroko, M.S. Sukhoruchkina, D.S. Sukhoruchkin

Petersburg Nuclear Physics Institute NRC ”Kurchatov Institute” 188300 Gatchina

1. Introduction

Neutron resonance spectroscopy is part of nuclear physics based on the Standard
Model (SM) as a theory of all interactions. In this work, we present the symmetry
motivated and electron-based empirical approach to SM development. It was shown in
[1], that nonstatistical effects, observed by different authors in the positions and spacing
distributions of neutron resonances in many isotopes are systematic.

The high accuracy in determining the neutron resonance energy achieved by the
time-of-flight method allowed us to consider together empirical correlations in nuclear
data, namely the existence of fine and superfine structures, respectively, with periods
of ε′=1.2 keV and ε′′=1.4 eV=5.5 eV/4, which are equal to the first and second QED
radiative corrections to the empirically found period 1022 keV=ε◦=2me in few-nucleon
excitations and the differences of the nuclear binding energies. The factor α/2π between
them corresponds to the influence of the physical QED condensate known for the mag-
netic moment. The distinguished character of the electron mass me=511 keV was found
in many empirical data: 1) The frequent appearance of stable nuclear intervals related to
the values of me and δmN = mn −mp=1293 keV, shown as maxima in Fig. 1, and as 2)
the period 16me in the empirical relations between the nucleon and electron masses [2-4]

mn = 115 · 16me −me − δmN/8 mp = 115 · 16me −me − 9(δmN/8). (1)

3) The discreteness in the nucleon separation energies shown in Figs. 2-4 and discussed
later, as well as in many other effects with the parameter me.

The neutron mass shift δn = 161.6491(6) keV from k · 16me coincides with the nuclear
tensor forces parameter ∆TF = 161 keV, which corresponds to the one-pion exchange
dynamics [3,4], and is equal to the radiative correction α/2π to the pion mass.

Nucleons and the electron are stable particles that determine the visible mass of the
universe. They belong to the first and last components of the Standard Model, respec-
tively, QCD and QED in the representation

SU(3)col ⊗ SU(2)L ⊗ U(1)Y . (2)

The masses of the neutron and the electron are in a ratio that is very accurately
estimated by the CODATA commission as mn/me=1838.6836605(11), see unexpectedly
simple ”CODATA relations” (1). Y. Nambu noted [5]: ”a) When we discover new phe-
nomena which we do not understand, the first thing to do is to collect data and try to find
some empirical regularities among them, b) one next tries to build concrete models, c)
finally there emerges a real theory ... Standard Model ...is theoretically unsatisfactory...
a) the unification of forces is only partially realized, and b) there are too many input
parameters. The nature can be at the same time more complicated than we think, and
simpler in a way we do not know yet... .”
According to S. Weinberg [6], d: we are ”still seeking a solution” for these problems.
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Figure 1: Top and 2nd line: E∗-distribution in nuclei with Z=4-29 for E∗<1300 keV
and 3000-4300 keV. Arrows mark δmN and 4×8×13δ′=3936 keV. Schematic dia-
gram of the nuclear level system is shown in Fig. . The equidistant maxima at
E∗=1008 keV=2×17δ′+4×18δ′, 1142 keV=5×17δ′ + 2×18δ′ and 1291 keV=8×17δ′ are
explained in the text. S2p (Z) for Z=40-84. Center: The E∗-distribution in all nuclei
with Z=32-35. The maximum at 1024 keV=6×18δ′. bottom: The excitation energy dis-
tribution in all nuclei with Z=61-73. Maxima at 531 keV=4×7δ′, 1059 keV=8×7δ′ and
1294 keV=8×17δ′=δmN .



Fine and superfine structures observed in neutron resonances with parameters ε′ =1.2 keV
and ε′′=1.4 eV=5.5 eV/4 were introduced together with the parameters of ”stabilizing ef-
fects of nuclear shells” [7] and empirical observations of many authors on the exact rela-
tions between the particle masses, namely the relations mN=mµ+6mπ and mΛ=8mπ (by
Y. Nambu), mω/2=mK-mµ=mN -mη=391MeV=Mω

q (by G. Wick), mη-mµ=
mN -mK=mΞ/3=Mq=441MeV (by R. Sternheimer and P. Kropotkin), m′

η−mη = mη−mπ

(by T. Takabayasi) and mπ± −mπ◦ = 9me (by the first author [1,8]).
This allowed us to introduce a common period of the mass discreteness δ = 16me, close

to the doubled value of the pion β-decay energy. Particle masses (mµ = 13δ,mπ = 17δ
and mN = 115δ), as well as large intervals 391MeV=Mω

q = 48δ and Mq = 54δ=441MeV,
later used as constituent quark masses in the Nonrelativistic Constituent Quark Model
(NRCQM) [9,10]) are shown in Fig. 2 from [1].

Figure 2: Stable intervals in particle masses found by G. Wick (double arrows) R. Stern-
heimer (dotted lines) and T. Takabaiasi (arrows). For convenience the integer number
16δ = 16× 16me = mω/6 was subtracted from masses.

The presence of the main CODATA relations (1) for the nucleon masses allows one
to consider the previously observed dependence of the two protons separation energies
on Z for Z=40-58 and Z=76-84, shown in Figs. 3-4, marked with arrows at the ends of
neutron shells at N=50, 82, 126 (see nεo = 2me on the right axis and the reference value
S2p=10183MeV in 212Po close to 10εo=10220MeV).



Figure 3: S2p (Z) for Z=40-84. Double circled is the reference point value S2p=10εo in
212Po. Lines mark groupings in deformed region.

Grouping S2p values by the number of periods n=10-16 is shown in Fig 3. Near con-
stancy at the end of the closed shell takes place in nuclei differing by ∆Z=1,∆N=2, and
in nuclei differing by ∆Z=2, ∆N (or 4He cluster), ∆EB turns out to be close to integers
k ∆=9me=4.6MeV. At N=82 for k = 20 ∆EB=46MeV (see Fig. 5, left). A similar
∆EB=147MeV=32∆ = 18 × 16me = 18δ grouping was found in light nuclei (Z ≤26),
differing by 44He cluster (Fig. 5, right [11]). In Table 1 it is shown that the unexpected
proximity of these empirical values ∆EB to the symmetry motivated multiple values k×me

is not contained in the existing theoretical models. Three empirical observation are used
during production Electron-based Constituent Quark Model (ECQM):
1. Leptons are considered together with the parameters of a very successful Nonrelativistic
Constituent Quark Model (NRCQM), namely pion parameters fπ = 130MeV,mπ=140MeV
and the constituent quark masses Mq = mΞ/3=441MeV, Mω

q = mω/2=391MeV. The
mass of τ -lepton is equal to 2mµ+4Mω

q .
2. Leptons and hadrons are forming the observed correlations in the mass spectrum with
a common period 8.176MeV=δ = 16me (Fig. 1 [3,4]), where it is shown that the masses of
the fundamental fields MZ = mµ(α/2π)

−1 and MH◦ = me/3(α/2π)
−2, as well as the main

parameter of the ECQM and NRCQM models, Mq = me(α/2π)
−1, are interconnected by

symmetry motivated relations and the common QED correction.
3. In this work, we consider additional empirical observation of the particle mass spectrum
and nuclear data, including the important role of neutron resonance data in confirming
the QED correction, which is a very important factor in the SM development.

In at least three cases: in the masses of leptons, in the masses of nucleons (CODATA
relations), and in the masses of hadrons containing bottom quarks, unexpectedly accurate
empirical relations with the electron mass me are observed.



Table 1: Proximity ∆EB (keV) to (45=5×9)εo=45.99MeV in nuclei differing by
2∆Z=∆N=4, N=82 center and to 144εo = 8 × 18εo=147.2MeV, N=20 right In nu-
clei differing by 4α cluster. Small deviations from k×ε◦ = 2me=1022.0 keV in real values
and large deviations in ∆EB drom Finite Range Droplet Model bottom, are boxed [10].

Nucl. 137Cs 135La 137La 139La 136Ce 138Ce 140Ce 139La 39K
Z 55 57 57 57 58 58 58 57 19

N 82 78 80 82 78 80 82 82 20

∆EB 45970 46018 45927 46024 46087 45997 45996 91975 147160
nεo 45990 45990 45990 45990 45990 45990 45990 91980 147168

diff. -20 28 -63 34 97 7 6 -5 8

Theo. 46340 45950 46820 46970 45960 46850 47160 93200 147450

diff. 350 -40 830 980 -30 860 1170 1220 282

Figure 4: Distribution of S2p (Z) (averaging 300 keV, step of the ideohistogram - 100 keV).
The regions of groupings at multiples of εo=1022 keV are shaded.

Figure 5: Grouping of ∆EB in nuclei differing by 6He-cluster (left) and by 4 4He-clusters.
Observed in Fig. 1 discreteness (fine structure) with numbers k=13,14,17 and 18 of the

common period δ′=9.5 keV was similar to other empirically found discreteness in nuclear
data and particle masses. In particle masses, k=13 corresponds to the masses of the muon
and Z-boson (Table 2, periods δ = 16me=8.176MeV and δ◦=3.50GeV), while k=18 (with
the same periods) corresponds to the difference in baryon masses due to the appearance
of strangeness (ms ≈150MeV in NRCQM) and due to the residual quark interaction
147MeV=(mDelta−mN )/2, as well as the scalar mass 125GeV.

Here we show that discreteness with k=13 also exists in neutron resonance data.
Symmetry motivated relations with k=13, 16-18 in addition to the proximity of the ratio
1/(32× 27)115.74× 10−5 to α/2π = 115.96 · 10−5 provide the production of Table 2.



2. Electron-based Constituent Quark Model

The muon and tau-lepton masses, together with the mass of the constituent quark
Mω

q = mω/2=391.33 MeV, take part in the exact relation (3). There is a proximity of the
ratio mτ/mK∗=1776.9MeV/891.7MeV=1.99 to 2.0.

mτ = 2mµ + 2mω ≈ 2mµ + 4 · 48 · 6me = 2mK∗ (3)

It was found [3,8] that besides themµ/me=105.658MeV/0.510.999MeV=206.768 prox-
imity to an integer (lepton ratio) L=207=16×13-1, the same ratio exists between the
vector bosons and constituent quarks masses MZ/Mq=206.8 and MW/M ′′

q =207.3 for
M ′′

q = mρ/2=387.6MeV. For an exactly integer value L one can get an estimate of the re-
spective mass value 441.0MeV close to 54δ−me. The initial mass of the baryon constituent
quark in NRCQM is three times greater than ∆M∆, namely Mq=441MeV=mΞ/3. The
mass of the meson constituent quark Mω

q in NRCQM is derived as half of the masses of
ω-meson close to 780MeV=6fπ, where fπ=130.7MeV=16δ is the pion β-decay parameter.

Table 2: Presentation of particle masses (3 top sections) and nuclear data (bottom) by
the expression n·16me(α/2π)

XM with QED correction α/2π. Boxed values mµ, MZ , MH◦ ,
δ◦, δ, δ′, δ′′ and ∆M∆=ms, me/3 are considered in [3.4,7,8]. Intervals in nuclear binding
energies (X=0) and fine structure in nuclear states are considered elsewhere.

X M n = 1 n = 13 n = 16 n = 17 n = 18

-1 3/2 mt=173.2

GeV 1 16Mq=δ◦ MZ=91.2 M ′

H=115 MH◦=125

0 1 16me=2md-2me mµ=106 fπ=130.7 mπ, ΛQCD ∆M∆=147

MeV 1 ∆EB 106 130 140 147
2 Figs. 6,7 212 262 296

3 NRCQM Mω
q=391 Mq=441

4 Radial excit. (bb̃)=563.0 (cc̃)=589.1
6 mω=782 2Mq=882
9 mc=1270(20)
10 mΛ = 19mπ 1390-1407
12 mΩ = 12mπ 1671-1688
60 Fig.? in [3] 8848
64 ηb(1S),Υ(1S) 9399-9460

1 1 16me=δ=8ε◦ kδ-mn-me= 170 = me/3

keV 1,8,8 · 4 CODATA, Fig.1 3936 δmN=1293.3 =161.651

1 1 9.5=δ′=8ε′ 123 152 ∆TF=161 170 (Sn)
keV 2 247 (91Zr) 322 (33S) 340 (100Mo)

2 1, 4 11=δ′′=8ε′′ 143 (As) 749 (Br, Sb) Neutron
eV 4, 8 570 (Sb) 1500 (Sb, Pd) reson.



The above mentioned CODATA relations (1) and the empirical observation used for
production of the Electron-based Constituent Quark Model (ECQM) are in agreement
with direct observation of the parameters of the very successful Nonrelativistic Constituent
Quark Model (NRCQM), namely, the pion parameters fπ = 130MeV,mπ=140MeV and
the constituent quark masses Mq = mΞ/3=441MeV (maxima at 445MeV, 3504-3962-
4427MeV), as well as Mω

q = mω/2=391MeV and 781MeV on the total spacing distribu-
tion of masses all 198 particles from the PDG-2020 compilation shown in Fig. 6.

The muon and τ -lepton (equal to 2mµ+4Mω
q [3,8]) masses together with hadrons form

the observed correlations in the mass spectrum with a common period of 8.176MeV=δ =
16me. The masses of the fundamental fieldsMZ = mµ(α/2π)

−1 andMH◦ = me/3(α/2π)
−2

in symmetry motivated relations (1:3) with leptons and common QED correction. The
important role of neutron resonance data in confirming QED correction and symmetry
motivated relations will be seen in the further development of the Standard Model.

0 100 200 300 400 500 600 700 800 900 1000

10

20

30

40

50

60

70

80

90

100

nu
mb

er 
of 

M i j pe
r 5

 M
eV

M i j, MeV

n = 198
 

        M
 i j

 

10
4 M

eV
11

0 M
eV

3 M
eV

16
 M

eV

17
6 M

eV

23
6 M

eV

34
0 M

eV

445 MeV
781 MeV

14
7 M

eV

39
1 M

eV

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

10

20

30

40

50

60

70

80

90

nu
mb

er 
of 

M i j pe
r 5

 M
eV

1402 MeV

18
63

 M
eV

18
52

 M
eV

17
74

 M
eV

16
88

 M
eV

1042 MeV 16
40

 M
eV

M i j, MeV

n = 198
 

        M
 i j

 

1563 MeV 19
06

 M
eV

1391 MeV

2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200 4400 4600

0

10

20

30

40

50         M
 i j

 

nu
mb

er 
of 

M i j pe
r 5

 M
eV

M i j, MeV

3962 MeV

n = 198
 

3504 MeV
4427 MeV

3029 MeV

Figure 6: Top: ∆M distribution of all differences between particle masses from com-
pilation PDG-2020 (averaging 5MeV) for the energy region 0–1000MeV. Maxima at
16MeV= 2δ = 2 × 16me, 391MeV=mω/2, 445MeV=Mq, 781MeV=mω . Center: The
same for energy region 2000–4600MeV. Maxima are at 1774MeV≈ mτ=1777MeV. Bot-
tom: The same for energy region 2000–4600MeV. Maxima are at 3504MeV≈ 8Mq = δ◦/2,
3962MeV≈ 9Mq and 4427MeV≈ 10Mq.



3. Analysis of neutron resonance data

Resonance parameters, which are investigated within neutron resonance spectroscopy
demonstrate the same symmetry motivated relations observed between stable nuclear
intervals and in particle masses.

In [11] it was found that for some monoisotopic odd-odd targets, stable intervals can
be observed (143 eV in As, 43 eV in Nb and 594 eV in Cs). The same values were found in
the positions of strong resonances of many nuclei (43 eV in Nb, 570 eV in Th etc.). In the
distribution of relatively strong neutron resonances in Z=33-56 nuclei, maxima at 44 eV
and 572 eV were observed (Fig. 7), and in nuclei Z=51-94, maxima at 22 eV and 286 eV.
We show here confirmation of the distinguished character of the 4:13 relation between
stable intervals in neutron resonances.

Figure 7: Distribution of positions of relatively strong neutron resonances of all nuclei
with Z=33-56 [11]. There is strong resonance in 233Th at 570 eV with gΓ◦

n=1.1meV,
which means, that neutron separation energy is correlated with the period 573 eV under
consideration.

We use here the data for the 233Th and 234−236U isotopes to check the 1:4:13 relation
previously found between the stable intervals in the neutron resonances of many other
isotopes. Some results of an earlier analysis of neutron resonance data for 233Th were also
given in [13]. These data for structurally important isotopes contain the most numerous
lists of resonance parameters (evaluated by F. Gunsing and L. Leal).

Thorium isotopes have 90 protons, corresponding to the filled f7/2 subshell. It was
noted long ago that the spacing distribution of its L=0 resonances is clearly nonstatistical.
On the histogram with the averaging parameter 5 eV in Fig. 8 (top), the equidistancy of
the maxima at k=1, 2, 3, 5 of the estimated period 11 eV corresponds (as k=288/11=26)
to the strongest maximum at D=288 eV (marked with an arrow). Fixing all such intervals
(x=288 eV) in the spectrum of all s-wave resonances (see Fig. 8, center), we obtain maxi-
mum at a doubled value of 576 eV. Such an interval corresponds to the distance between
strong neutron resonances (maximum at 573 eV in Fig. 2, bottom, with the selection of
resonances with a reduced neutron widths greater than 1meV, deviation from the ran-
dom level ≈ 3σ). A small maximum at 42 eV on the same distribution (Fig. 8, bottom)
corresponds to a 1:13 ratio between strong resonances (between states with a relatively
large single-particle component in the wave function). Similar correlations were found
earlier in strong resonances of many different isotopes (Fig. 7).

The spectrum of highly excited 236U states contains 3164 states with the spacing dis-
tribution shown in Fig. 9, top (all states have L=0). Neutron resonances were selected



according to spin J (n=1438 for J=3 and n=1734 for J=4), and respective spacing distri-
butions are given in Figs. 9 and 10.
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Figure 8: Top: Spacing distribution of all L=0 neutron resonances in 233Th. Center: Spac-
ing distribution of L=0 neutron resonances in 233Th adjacent to intervals D′=x=288 eV.
Bottom: Spacing distribution of all L=0 strong neutron resonances in 233Th.

In spacing distribution of 236U resonances with J=3 (Fig. 9, 2nd line) a grouping of
4 maxima at 55 eV=5δ′′ is situated at the doubled position of the maximum at 27.8 eV
(see Fig. 9 center). Resonances forming the maximum at =393.5 eV (close to 396 eV=4×
9×11 eV) are frequently appear together with another resonance situated 288 eV away
from them (see maximum at 287.9 eV, close to 2 × 143 eV=2 × 13δ′′). This interval,
coinciding with D′=288 eV in 233Th (Fig. 8, top), has exactly twice the value of the
interval 143.4 eV in independent spacing distribution for J=4 resonances (Fig. 10, top).
This interval appears together with the interval 44.2 eV=4δ′′ = 4× 11 eV.

In spectrum of 236U (Fig. 9, top) there is a small maximum at 43 eV, but only by
selecting resonances according to their spin and by using correlation analysis of their
decay properties one can hope to obtain further fundamental information.
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Figure 9: Top: Total spacing distribution in all 236U resonances. 2nd line: The same for
resonances with J=3. Center: Adjacent interval distribution for J=3 236U resonances
for x=27.7 eV=(55 eV=5δ′′)/2. Bottom: The same for x=393.5 eV (close to 396 eV=4 ×
9×11 eV). Maximum at 288 eV (close to 2× 143 eV=2× 13δ′′) coincides with D′=288 eV
in 233Th (Fig. 8, top).
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Figure 10: Top: Spacing distribution of all 236U neutron resonances with J=4. 2nd line:
Adjacent interval distribution of 236U resonances for x=5.7 eV. Center: Adjacent interval
distribution for J=4 236U resonances for x=143.3 eV. Bottom: The same for x=44.2 eV.
4Σ deviation is marked. An exact ratio 13:4 = 143.4:44.2 is considered in the text.



Figure 11: Top: The spacing distribution in neutron resonances of the compound nucleus
76As with averaging interval ∆E. The response function of the program ”Period” means
the number of resonances coinciding with the periodic system (k is the number of periods
x, one for the left distribution and ten for the right distribution) [14]. Bottom: The
periodicity in the positions of neutron resonances of the target 75As, found in [14].

Considering the role of the ratio k=13 in particle masses [8,12], discussed in the Intro-
duction, we could mention observations of this ratio in neutron resonance spectra of other
isotopes [13,14]. Observation by K. Ideno and M. Ohkubo of the periodicity in resonances
of As [14] is shown in Fig. 11 (maxima at D = k×13δ′′ = k×143 eV are given as deviation
in units of σ). Two examples of long range correlations are presented.

Discreteness with k=10,12,14 of the period of 13δ′=123 keV in E∗(0+) of 108,110,112Cd
was noticed.

4. Conclusions

Symmetry motivated relations 1:9:13:16:17 between particle masses and stable nuclear
intervals of the few-nucleon-, fine- and superfine-structures effects are considered here as
an indirect check of the ECQM model with the parameter α/2π corresponding to the
QED correction due to influence of the condensate. This factor can be indirectly studied
in nuclear data. Important application of this factor can be seen in empirical analysis
of particle mass data. In Table 3 from [8] a coincidence of two estimates of the mass of
the constituent quark Mq ≈441MeV used in NRCQM and ECQM models are presented.
The first estimate is derived from the coincidence of the ratio mµ to MZ with α/2π and
L = 13× 16− 1. The second estimate is obtained from empirical mass of the scalar (bb̃)
meson (m(ηb) = 64Mq).

We see that any confirmation of different aspects of CODATA relations as multiple
relations with the real mass of the electron, its symmetry and QED correction could be



Table 3: Comparison of the SM and NRCQM parameters mµ=105.659375(35)MeV and
me=510.998328(11) keV with QED radiative correction α/2π=116.0·10−5 [8].

Values Mass and ratios

1 Ratio=mµ/me 206.768
2 (L - ratio)/L 112.08·10−5

3 mµ/MZ 115.9·10−5

4 me/Mq 115.7·10−5

5 Mq = mΞ−/3 441.5MeV=54 · 16me

6 MZ/L=Mq(1− α/2π) −me 440.5MeV=M red
q

7 (3/64)m(ηb) 440.6MeV

used for SM development. The unexpectedly universal relations in the neutron resonance
positions and spacings signal fundamental aspects of nuclear physics [16,17].

The symmetry motivated relations with k=13 in the nuclear data, manifested in the
stability of the intervals, are associated with the same discreteness in the particle masses
and result in the lepton ratios and masses of both heavy leptons.
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