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1. Introduction 
In spite of preserved representation that a nucleus is a system of non-interactive Fermi-

particles, a modern theory supposes that the wave function of any excited level includes both 
quasi-particle and phonon components. So an experimental obtaining of the nuclear-physical 
parameters of 239U nucleus is needed not only for practical application, but also for 
investigation of fundamental interaction between fermion and boson states of nuclear matter. 
Information about the nuclear-matter behavior can be received if only the strong-correlated 
nuclear-physical parameters (the nuclear level density ρ and partial widths Γ of reaction-
products emission) are obtained simultaneously at the nuclear-reaction investigation. 

As the required strong-correlated parameters enter into the measured spectrum as a 
product ρ×Γ, their extraction from indirect experiment is a complicated problem of search for 
inverse solution. Analysis of data of indirect experiment in order to obtain the strong-
correlated parameters ρ and Γ always leads to inevitability of unknown sizeable systematical 
errors. By the highest standards, reliable nuclear-physical parameters can be obtained in two 
independent experiments only.  

When γ-quanta coincidences of the two-step cascades are recording, indeterminateness 
of the nuclear-physical parameters obtained from measured intensities of γγ-cascades can be 
diminished in the presence of information about initial, final and intermediate cascade levels. 
And with all this going on, it is very important to ascertain the quanta sequence in the 
cascades in order to determine more reliable nuclear-parameters. But an ambiguity of the 
obtained nuclear parameters always exists in γγ-coincidence experiment, even at essential 
difference of the ρ(Eex) and Г(Eγ) functions, where Eex and Eγ are energies of nuclear 
excitation and of γ-quantum. 

The empirical method was created and developed in Dubna in order to enable an 
investigation of dynamics of nuclear-structure change below the neutron binding energy in a 
nucleus. The Dubna method allows simultaneous extraction of the nuclear level density and 
partial widths of γ-quanta emission from approximation of the experimental intensities of only 
primary transitions of the two-step γ-cascades, without using experimentally-untested 
hypothesis.  

The Dubna empirical method was applied to analyze presented in [1] experimental γ- 
spectrum from the 238U(n,2γ)239U reaction, which has been measured using nearly 4π γ-ray 
calorimeter DANCE composed of a spherical array of 160 BaF2 crystals. 

  
2. Opening remarks concerning analyzable data   

The multistep γ-cascade spectra at the decay of isolated s-wave (Jπ = 1/2+) resonances in 
compound-nuclei of three uranium isotopes are presented in [1] for multiplicities up to M=4. 
For reliability of extraction of the nuclear-physical parameters from experimental γ-cascade 
spectra it is necessary to determine the quanta sequence in the cascades. As for M-cascade 
quanta there is a possibility of М! placing variants in the decay scheme, it makes the quanta-
sequence determination impossible in the cascades with multiplicities M>2.  



An uncertainty in the quanta sequence exists even for the cascades with multiplicities 
M=2, but the presence of energy-resolved cascades’ peaks in the experimental spectrum 
allows the use of available information about known intense transitions. As far as an energy 
resolution of coincidences recording enables, the experimental spectra are composed of 
isolated peaks and continuum of unresolved ones. In the two-step cascade the γ-quanta 
sequence can be unambiguously determined in the experimental-intensity spectrum only for a 
part of energy-resolved cascades corresponded to available spectroscopic data. The part of 
such cascades in the experimental spectrum can be very sizeable if detectors of high energy 
resolutions (now HPGe-detectors only) are used to record γγ-coincidences. For example, used 
in our experiments HPGe-detectors of greatly high intensity allowed us to increase a part of 
energy-resolved cascades in the experimental γ-spectra up to 40‒60% at statistics about of 
40000 events (or more).  

But energy-resolving power of scintillation counters, which are used in experiments 
with 4π-calorimeter, unfortunately doesn’t allow a separation of individual intense 
transitions, so the decay-scheme application is impossible in the analysis. And what is 
more, in the experiment with 4π-calorimeter a sharp increase in a number of counts was 
always observed for experimental γ-spectra of the cascades of M=3 multiplicity as compared 
with ones of M=2. Underestimation of the intensities of the cascades of M=2 multiplicity is 
quite possible owing to redistribution of annihilation quanta between detector crystals at 
low energy resolution of the spectrometer.  

In spite of insufficient-detailed spectrum recorded by scintillation detectors, which 
make impossible a separation of spectrum of primary γ-transitions with a fair degree of 
confidence, in spite of everything, we try to analyze presented in [1] experimental 
spectrum of M=2 multiplicity from the 238U(n,2γ)239U reaction. 

 
3. The basis of the Dubna empirical method  

A key concept of the Dubna empirical method is obtaining the ρ(Eex) and Г(Eγ) functions 
from the fitting of the Iγγ(E1)-intensities of only primary transitions of the cascades (E1 is 
energy of primary γ-quantum of the two-step γ-cascade), calculated when Monte-Carlo 
solving a system of nonlinear equations (1), to the experimental intensities of primary 
transitions. The use of high-aperture HPGe-detectors in the experiments allows a 
determination of the part of primary transitions of the two-step cascades with an uncertainty 
of 10–20% without distortion of the spectrum normalization, which was confirmed by 
negligibility of the effect of the systematic errors of Iγγ(E1)-spectrum separation, for example, 
for 172Yb nucleus [2]. 

Each of the equation (1) connects Iγγ(E1)-intensities with the partial widths of γ-
transitions between neutron resonance λ and a group of final levels f via all possible 
intermediate levels i  in a small energy interval ΔEj:  
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In interval ΔEj there are nj intermediate levels i, to which Mλj =ρΔEj transitions go from initial 
level λ, and mjf secondary transitions go to final level f (nj =ρΔEj and mjf =ρΔEj at all 
intermediate-levels energies). At the excitation energy Eex< Ed (Ed is maximal excitation 
energy of "discrete" level area) the system (1) contains only experimental data on energies 
and quantum numbers of known to date levels and their decay modes. 

In spite of the nonlinearity inevitably leads to false likelihood maxima, the system of 
non-linear equations (1) could have a definite solution (hypothetical limit) if the experimental 



Iγγ(E1)-intensities would be known in each energy point. But as there are no high-aperture 
spectrometers of gammas with an electron-volt resolution, solving of the system of the 
equations (1) is impossible without using model representations of the nuclear level density 
and the strength functions k(Eγ)=Г/(A2/3∙Eγ

3∙Dλ), where A – nuclear mass number, Dλ – 
average distance between nuclear levels. However, available in RIPL-file [3] models of the 
required nuclear parameters (based at the representation of a nucleus by a pure fermion 
system) don’t allow a description of real experimental spectra. So the problem of a choice of 
the most realistic model representations for the ρ(Eex)=φ(p1, p2, ...) and Г(E1)=ψ(q1, q2, ...) 
functions of some fitted parameters p and q, is as great as ever. 

It is important that deformed at every iteration fitted parameters would lead to the best 
experimental-spectra description. That is guaranteed by the Dubna method, as the model 
representations of the nuclear-physical parameters are tested and modified in the course of the 
analysis. Average amplitudes of changing of correction-vector components (no more than 1% 
of current values of the set of fitted parameters) decrease at each iteration to guarantee χ2 

minimum: 
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dispersion of their difference. With all this going on there is no need to use any hypothesis 
untested experimentally. 

A systematical uncertainty of the obtained nuclear parameters is mainly determined by 
inexactness of model-phenomenological representations about energy dependences of the 
φ(p1, p2, ...) and ψ(q1, q2, ...) functions. 

 

4. The nuclear-parameters representations in the Dubna empirical method 
At given ρ(Еex)=φ(p1, p2, ...) and Г(E1)=ψ(q1, q2, ...) functions parametrized according to 
definite models there is only one solution of the system of equations (1). 

Now for representation of the ρ(Eex) function in the Dubna empirical analysis a modern 
Strutinsky model [4] (which is able to describe successfully pre-equilibrium nuclear reactions) 
as well as a balance between changes of entropy and energy of quasi-particles’ states [5] are 
being applied.  

In a framework of the model [4] an expression for density ρl of levels of fermion type is 
written as: 
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Here Ωn is of n-quasi-particle states, a cut-off factor σ of spin J of excited state of compound-
nucleus above the energy Ed was taken from back-shifted Fermi-gas model [6], Ul is the 
energy of l-th Cooper pair breaking threshold, and density g=6a/π2 of single-particle states 
near Fermi-surface was also taken from the [6] model). An influence of the shell 
inhomogeneities of a single-particle spectrum was taken into account by a definition of the 
level-density dependence on excitation energy in a value:                               

                                       a(A, Eex)= ã (1+((1–exp(γ Eex)) δE/Eex)).                           (4) 
 

An asymptotic value ã = 0.114A + 0.162A2/3 and coefficient γ = 0.054 were taken from [5]. A 
shell correction δE calculated from the data of mass defect in a liquid-drop nuclear model [3] 



is lightly changed to keep an average distance Dλ between resonances of an investigated 
nucleus. 

Generally accepted now phenomenological coefficient Ccol of enhancement of collective 
level density imitates well an increase in vibrational level density and for given excitation 
energy Eex on the basis of a theoretical description of [5] is written as: 
 

              .//exp exex β+)E)U(EE)U(E(A=C μlνllcol −−−                            (5) 
     

Here Al are fitted independently parameters of densities of vibrational levels above the 
breaking point of each l-th Cooper pair, Eμ is a change in the nuclear entropy, Eν is a change of 
quasi-particles excitation energies, parameter β ≥ 1 can differ from 1 for deformed nuclei. 

The smooth parts of the energy dependences of the strength functions, k(E1,Eγ) and 
k(М1,Eγ), of dipole electrical and magnet γ-transitions are expressed similarly as in [7]:   
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where parameters TE (or TM) are varied thermodynamic parameters, and wE (or wM) and κE (or 
κM)  are added parameters of weight and of a change of derivatives of the strength function, 
correspondingly  (indices E and M refer to E1- or M1-transitions). In equations  
(6) EG, ΓG and σG are location of the center of giant dipole resonance, its width and cross 
section in maximum. 

If E1 ≈ Bn (Bn is the nucleon binding energy), fitted ratios ГM1/ГE1 of E1- and M1-
strength functions are normalized to known experimental values, and their sum Γλ is 
normalized to the full radiation width of the resonance. 

 
5. Analysis of the data from 238U(n,2γ)239U reaction 

All multistep γ-cascade spectra measured in [1] were analyzed using DICEBOX-code 
[8]. DICEBOX algorithm, taking into account the levels from ENSDF-file up to critical 
energy (830 keV for 239U), above this energy generates levels according to increase in of their 
number in strict correspondence to statistical theory of a nucleus. Probabilities of individual 
transitions between each pair of levels are simulated using partial-widths formulae, which 
includes both the level density and a random number taken from a normal Porter-Thomas 
distribution. As it is mentioned by the experimenters themselves, in their analysis an 
extremely large number of different artificial “nuclear realizations” appeared due to Porter-
Thomas fluctuations. In those calculations several forward-modelling approaches for the E1 
and M1 photon strength functions as well as for the nuclear level density were used. However, 
the practical-applied Strutinsky model of the nuclear-level density was absent among the most 
available models used by the experimenters of [1]. By the way, modern theory about 
dynamics of intra-nuclear processes at the excitation-energy increase (see [9], for example) 
points to existence of different wave-function structure of the excited levels which excludes 
smoothness of the energy dependences both the level density and radiative strength functions. 
It is reasonable also to note that testing of the different types of the strength functions makes 
sense only with simultaneous testing of the models of the nuclear level density. 
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Fig.1. The dependence of intensities of the two-step γ-cascades (relative to their total area) on γ-
quanta energies at the decay of compound-state in 239U nucleus (36 eV):  close points are 
the total Iγγ(Eγ)-intensities of the two-step cascades; open points are Iγγ(E1)-intensities of 
first transitions only; dashed line is the best fit of Iγγ(E1)-intensity in a framework of the 
Dubna empirical method.  

 

Unfortunately, the experimental spectrum of the intensities of the two-step γ-cascades in 
239U nucleus is shown in [1] by plotted points only. Nevertheless, we separated primary γ-
transitions spectrum (open points in Fig.1), as it is necessary for our subsequent analysis. We 
used a valid assumption that, as a rule, primary transition in the two-step γ-cascade has more 
energy than secondary one, and removed secondary transitions from the total spectrum, taking 
into account mirror-symmetry of energy distributions of primary and secondary transitions 
relative to a central point of the Iγγ(Eγ)-intensity spectrum (at a half of total energy of the 
cascades). Experimental points of the total-intensity of the two-step γ-cascades are shown 
in Fig.1 as close ones. 

In spite of impossibility to get a shape of Iγγ(E1)-distribution accurately from 
examinee experimental data, at least, a qualitative evaluation of the energy dependences 
of the level density and strength functions for 239U nucleus has been accomplished. 

The authors of [1] have explained an unsatisfactory description of measured Iγγ(Eγ)-
intensities by impossibility of taking into account of all parameters of the γ-decay in the used 
models. We agree with their reasonable assertion completely, but our calculations showed that 
experimental spectrum of Iγγ(E1)-intensities cannot be described successfully by any smooth 
dependence of the nuclear level density on excitation energy. 

If a nucleus is imagined as a system of non-interactive nucleons, an assumption about 
consecutive breaks of Cooper pairs of nucleons in decayed nucleus at an increase in its 
excitation energy is soundly enough. The step-wise dependence of the level density of nucleus 
on its excitation energy can be well founded by existence of energy gaps in the spectrum of 
excited nucleus at discontinuity of a number of pair of excited nucleons. 

The dependence of the level density of 239U nucleus on its excitation energy (see 
Fig.2) obtained from the best Iγγ(E1)-intensity fits in a framework of the Dubna empirical 
method, have an evident step-wise behavior. Approximation of the experimental data using a 
smooth ρ(Еex) function postulated by the authors of [1] results in appreciable increase in χ2. 
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Fig.2. The expected level density of 239U nucleus: close points is our calculation (using fitted 

parameters from the best Iγγ(E1)-distribution fit); line is calculation according to the back-
shifted Fermi-gas model predictions.  
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Fig.3. The radiative strength functions for 239U nucleus (our calculations for the Iγγ(E1)-

distribution best fit): solid line is our calculation of k(E1) for E1-transitions in the 
cascades; dashed line is k(M1)-calculation for M1-transitions.  

 

And a rate of the level-density rise essentially differs from that predicted by the back-
shifted Fermi-gas model.  

It must be noted that in all nuclei analyzed earlier by the Dubna empirical method (see, 
for example, [10–12]), the experimental γ-spectra of which were far better suitable for 
analysis than spectrum from 239U nucleus, the breaks in nuclear level-density dependences on 



the excitation energy are positioned with a step ≈2Δ0 (Δ0 is the pairing energy of the last 
nuclear nucleon). Our fittings of Iγγ(E1)-intensities of the cascades in 239U nucleus also do 
not exclude for this nucleus a possibility of nucleons’ pairing and consecutive breaking of 
these pairs.  

The expected behavior of energy dependences of the radiative strength functions for E1- 
and M1-transitions in the two-step cascades of 239U nucleus obtained from our calculations 
on a base of fitted parameters at the Iγγ(E1)-intensities description are presented in Fig.3.  

 
6. Conclusion 

 
An experimental obtaining of the parameters of γ-decay of any compound-state is 

exclusively important to understand processes which take place in an excited nucleus.  
In spite of insufficient energy-resolving power of scintillator detectors of DANCE 

calorimeter, in the absence of individual cascade peaks in measured γ-spectrum, we have 
been successful in description of the experimental spectrum of intensities of primary 
transitions of the two-step γ-cascades in 239U nucleus with subsequent simultaneous obtaining 
of its, at least, evaluative  ρ(Еex) and Г(Е1) functions.  

Unfortunately, an absence of experimental individual energy-resolved cascades in total 
γγ-spectra from 4π-experiment doesn’t allow a clarification of the intra-nuclear processes in 
239U nucleus. A process of breaking of Cooper pairs is not been experimentally investigated 
until now. Nevertheless, our calculations visually demonstrate that successful description of 
the experimental intensities of the two-step γ-cascades in 239U nucleus is possible if only the 
nuclear-level density has not smooth dependence on the excitation energy.  

Only high-transmission spectrometers of gammas and testing of suitable model 
representations of required strong-correlated nuclear parameters can provide their reliability. 
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