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Experimental data on the muon-induced prompt fission are analyzed and compared to theory. 
Good agreement is observed for the 2p–1s and 3d–1s transitions. Anomalously big 
nonradiative width in the case of 3d–1s transition is surprised. Ways of resolving this puzzle 
are discussed. 
 
 

1. Introduction 
 
I start with an example which clearly demonstrates bounds of our knowledge. 

Consider fission of 238U on the final stage of saddle-to-scission descend. Two scenarios are 
possible. Neck may rupture at small distance between the fragments. Strong Coulomb 
repulsion accelerates the fragments to some asymptotic value of TKE. Otherwise, the neck 
may rupture later. The distance between the fragments is larger, Coulomb repulsion is weaker. 
But if the fragments already have an initial velocity, they can accelerate to the same TKE. So, 
in the first case, the distance is small, repulsion – great. In the second case, the distance is 
larger, repulsion is weaker, but the TKE are the same, however. The first scenario implies 
strong dissipation, the second – weak dissipation. Therefore, one can say nothing about 
dissipation basing on experiment.  
     However, there is a tool which can help. This is prompt fission in muonic atoms, induced 
by nonradiative muon transitions. And the muons play the role of Maxwell’s demons, or 
spectators, who watch the fission spectacle directly from the inside, and transfer the 
information to us. The process is as follows. 
         Muons “slow down” in matter then they start to be captured into atoms, to the muonic 
orbits with n about 14. Then they cascade down by means of Auger- or radiative transitions. 
In the final transition, for example 2p to 1s, they have a chance to transfer the energy to the 
nucleus. The nucleus gets excited, and then it can undergo fission, which is called prompt. 
Otherwise, the muon will be captured by the nucleus due to weak interactions, and the nucleus 
also can undergo fission. This is called delayed fission. 
          It was Wheeler who proposed such a process [1]. He supposed tat nuclear excitation can 
occur in the 2s–1s transition. These transitions compete with the radiative 2s–2p transitions. 
Other possible nonradiative transitions, like 2p–1s, 3p–1s compete with the same radiative 
transitions. And 3p to 1s transition also competes with the radiative 3p–2s transition. 
However, Zaretsky showed [2] that the probability of nuclear excitation in these transitions is 
also high, of the order of 1. Furthermore, Teller and Weiss showed [3] that in the E2 transition  
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3d–1s the nonradiative probability is about the same. Those results were confirmed by 
Nesterenko and mе [4]. Moreover, they showed that the nonradiative probability in the E3 
transition, 3d–2p, is also high. It achieves 15% in spite of it competes with the E1 radiative 
transition. In this transition, excitation of the low-lying electric octupole resonance (LEOR) 
takes place. The energy 3.5 MeV is too small in order to induce fission, but LEOR can be 
studied in this way as excited by monochromatic photons. 
          Experimental discovery was induced due to Zaretsky’s calculations. It took place in 
Dubna in 1960, with the paper by Pontekorvo et al. [5, 6]. For this purpose, muonic spectra of 
two atoms were compared to one another: 238U and 208Pb. They might be similar as uranium 
and lead have close atomic numbers. But the lead nucleus has a very low level density, which 
makes nonradiative excitation unlikely. Opposite, the level density is high in the U case, 
hence nonradiative excitation was expected.  
          When the spectra had been obtained, they both showed distinctive peaks corresponding 
to the 2 to 1 transition for both nuclei. In the case of U, the peak was by about 20% lower. 
Therefore, a missing intensity was established, which evidenced an appreciable probability of 
the nonradiative transition in uranium nuclei. This discovery was included in the register of 
scientific discoveries of the USSR. 
          Numeric data on the nonradiative probabilities were obtained in the group of Prof. 
David at the University of Bonn. They studied balance of incoming and outgoing radiative 
intensities for each atomic level. As a result, they obtained the nonradiative probabilities 
presented in Table 1. The data are compared with theoretical calculations. In particular, the 
data are shown for various components of the 2p–1s transition. The mechanism of 
radiationless transitions is considered to be as follows. Let muon make a transition e.g. from 
the 2p to 1s state. The energy of the transition is transferred to the nucleus by means of a 
virtual photon. This is actually a reverse internal conversion (IC) process. Theory of IC 
teaches that its probability factorizes into the nuclear radiation probability and ICC (Internal 
conversion coefficient), which is practically independent of the nuclear model.  

In a number of theoretical papers calculations of the probabilities of the dipole 2p, 3p 
→ 1s as well as the quadrupole 3d → 1s radiationless transitions were carried out. Along with 
those transitions, herein we also consider the 3d → 2p radiationless transitions of E3 type 
accompanied by the excitation of the low-lying electric octupole giant resonance (LEOR). We 
shall show that they are expected to be of the same order of magnitude as the dipole and 
quadrupole transitions. For present purposes we have used the quasi-particle-phonon nuclear 
model (QPNM) [8], which is known to work well in the description of low-lying nuclear 
states as well as giant resonances both in spherical and deformed nuclei. 
          These results are listed in Table 1.  They show a rather large variability of the radiative 
widths for various fine-structure components. Data for the 2p–1s transition are in agreement 
with theoretical calculations. The authors did not search for the 3d–2p transitions, as they did 
not know about Ref. [4] at the time of experiment. Surprisingly, a radical disagreement with 
theory was found for the 3p–1s transitions. It is not merely 20%. This difference shows that 
the ratio of nonradiative-to-radiative probabilities achieves an order of magnitude.  

In order to better understand the nature of this divergence, I undertook model-
independent calculation using the experimental cross-sections of photoexcitation and 
photofission of the uranium nuclei. This paper provides a detailed information concerning the 
cross-sections. Before turning to these results let us remind the physical principles which 
underlie the microscopic calculation in Ref. [4]. 
      



Proceedings of ISINN-29, JINR, E3-2023-58, Dubna, 2023, p.272 – 277 
 
 

Outline of the model 
 

 Description of the radiationless transitions first of all requires knowledge of the 
nuclear electromagnetic strength functions which contain information about the nuclear 
structure. The strength functions from QPNM are quite appropriate for this purpose. Next 
important moment is the muonic conversion coefficients (MCC). Involving MCC makes the 
calculations considerably easier, reducing the problem to independent calculations of the 
nuclear strength functions and MCC due to factorization of the amplitude. Moreover, 
factorization justifies use of experimental cross-sections for calculation of the radiationless 
transition probabilities. 

The expression for the radiationless transition width is obtained by using the principle 
of detailed balance. In accordance with the definition of the MCC the width of the inverse 
process is the product of the radiative nuclear width and the MCC only. Turning to the 
radiationless nuclear excitation one immediately obtains an expression for its width (ħ= c= 1): 
      

Г𝑟𝑟𝑟𝑟 = 𝛼𝛼𝜇𝜇
(𝑑𝑑)(𝑖𝑖 → 𝑓𝑓) ∙ 8𝜋𝜋(𝐿𝐿+1)

[(2𝐿𝐿+1)‼]2
𝜔𝜔2𝐿𝐿+1𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔).                            (1) 

 

Here L is the multipole order, 𝜔𝜔 is the transition energy, with 𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔) being the 
strength function for the nuclear excitation [8]. Then, 𝛼𝛼𝜇𝜇

(𝑑𝑑)(𝑖𝑖 → 𝑓𝑓) is the MCC for the muonic 
transition from level i to f. Superscript d underlines the fact that both muonic states belong to 
the discrete spectrum as distinct to the traditional internal conversion, when an electron (or a 
muon) transfers into the continuum. As a consequence, the discrete MCC become energy 
dimensional due to the other normalization of the wavefunction of the corresponding muonic 
state. Discrete MCC were earlier used by Zaretsky and Karpeshin. They predicted the 
previously mentioned effect of emission of muonic X-rays from the heavy fragment as a 
result of muonic promotion to the 2p state via internal conversion. To calculate  𝛼𝛼𝜇𝜇

(𝑑𝑑)(𝑖𝑖 → 𝑓𝑓) a 
number of programs was used from the RAINE set [9] intended for relativistic calculations of 
atomic structure, and modified for calculation of MCC. Finite nuclear extent, vacuum 
polarization and electronic screening are included along with relativistic effects. The nuclear 
electromagnetic strength functions have been calculated by means of the formula 
 

𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔) = ∑ 𝐵𝐵(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔)𝑔𝑔 ∙ ∆/2𝜋𝜋
(𝜔𝜔−𝜔𝜔𝑔𝑔)2+(∆/2)2

 ,                          (2)                      

where 𝜔𝜔𝑔𝑔 the energy of a phonon state 𝑔𝑔, Δ being the averaging parameter. The procedure for 
calculating the strength functions is described in detail by Soloviev et al. [8]. We have used in 
the calculations the value of Δ = 300 – 500 keV. At the excitation energy of 6 – 10 MeV the 
density of the one-phonon states with given L is about 100 per MeV. The values of Δ used are 
fairly large to smooth away fluctuations in 𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔) produced by particular highly 
excited states 𝜔𝜔𝑔𝑔. On the other hand, such values of Δ are fairly small so as not to distort the 
average value of 𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔) at the given excitation energy. 

  The radiationless transition probability per muonic atom is given by the branching 
ratio 
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    𝑊𝑊𝑟𝑟𝑟𝑟 = Г𝑟𝑟𝑟𝑟/(Г𝑟𝑟𝑟𝑟 + Г𝛾𝛾
(𝑖𝑖)) ,                                                (3) 

where Г𝛾𝛾
(𝑖𝑖) is the radiative width of the muonic state i. These widths were calculated allowing 

for the relativistic effects, analogously to 𝛼𝛼𝜇𝜇
(𝑑𝑑), by using the Dirac wave functions. 

 
Table1. Calculated radiationless transition probabilities in comparison with the experimental 
data. 〈2𝑝𝑝 − 1𝑠𝑠〉 is averaging over the fine-structure components. Designations SC, VC show 

application of the surface or volume nuclear current models, respectively, for the sake of 
calculation of MCC 

    

 〈𝟐𝟐𝟐𝟐 − 𝟏𝟏𝟏𝟏〉            𝟐𝟐𝟐𝟐𝟏𝟏/𝟐𝟐 − 𝟏𝟏𝟏𝟏         𝟐𝟐𝟐𝟐𝟑𝟑/𝟐𝟐 − 𝟏𝟏𝟏𝟏          𝟑𝟑𝟑𝟑 − 𝟏𝟏𝟏𝟏          𝟑𝟑𝟑𝟑 − 𝟏𝟏𝟏𝟏   
 

Experiment [7] 
 

26.2±2.6 
 

21.6±3.2(1.6) 
 

31.1±2.8(1.3) 
 

88.9±4.3 
 

12.8±1.4 
 

Zaretsky & Novikov 
with σ from [10] 

 

 
22.4 

 
21.1 

 
24.2 

 
64.7 

 

 

Zaretsky & Novikov 
with σ from [11] 

 

 
29.8 

 
28.4 

 
32.0 

 
68.5 

 

 

Teller & Wess [3] 
 

 

20.7 
 

20.0 
 

21.7 
 

59 
 

9.6 

Karpeshin 
& Nesterenko [4] 

11 – 15SC 

19 – 26VC  
  55 – 65SC  

57 – 69VC 
19 – 24SC  
25 – 32VC 

 

2. Results and discussion 
 
Note that a statement can be noted saying that the radiative widths of np muonic levels 

for n > 2 are mainly determined from the transition to the 1s state. However, the probabilities 
of the transitions to the 2s state turned out to be approximately equal. It is the finite nuclear 
extent which produces such an effect. For these transitions the strength function is mainly 
determined from the giant electric dipole resonance (GDR). However, their energies are 
smaller than the energy of the top of the GDR. This refers especially to the 2p→1s transitions 
but to a lesser degree also applies to the 3p‒1s transitions in which the energy falls on a slope 
of the GDR. Under these circumstances, the collective mode of nuclear motion is not 
manifested so clearly. As a result, the strength function might not be calculated as reliable.  
      For this talk, I revised the calculations for the E1 nonradiative transitions in 238U by 
making use of experimental photoexcitation cross-sections from the paper by Caldwell et al. 
[11]. Experimental data are perfectly fitted by two-humpered GDR. The formula for Г𝑟𝑟𝑟𝑟 is 
factorized into MCC, the cross-section and geometric factor. The formula is very simple and 
universal for each kind and order of multipolarity. Indeed, cross-section can be expressed in 
terms of the strength function as follows: 
 

𝜎𝜎𝐿𝐿 = 8𝛼𝛼𝜋𝜋3 ∙ (𝐿𝐿+1)𝜔𝜔2𝐿𝐿−1

𝐿𝐿[(2𝐿𝐿+1)‼]2
𝑏𝑏(𝐸𝐸𝐸𝐸; 0 → 𝜔𝜔).                                      (4) 

Making use of (4) in (1), one arrives at the following expression: 
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Г𝑟𝑟𝑟𝑟 = 𝛼𝛼𝜇𝜇
(𝑑𝑑)(0 → 𝜔𝜔) ∙ 𝜔𝜔

2

𝜋𝜋2
𝜎𝜎𝐿𝐿.                                              (5) 

The results of calculation are presented in Table 2. As above, there is a good agreement for 
the 2p–1s transition. However, there remains drastic contradiction between the theoretical and 
experimental probabilities in the case of the 3p–1s transition. A particular attention was paid 
to the ratio of the 3p–1s nonradiative-to-radiative probabilities. It can be clearly seen from 
Table 2 that in the case of the 3p–1s transitions, the experimental nonradiative probability is 
by an order of magnitude as high as the theoretical one. In the case of the 2p–1s transition, the 
agreement with experiment is good. 
 

Table 2. Comparison of theory, based on using experimental cross-sections [11], with 
experiment [7] with respect to the radiationless transition probabilities Wrl as well as the ratios 

of the nonradiative-to-radiative transition widths  
 

Transition 
 

 

 

 
Energy, MeV 

 

Wrl 
 

Г𝑟𝑟𝑟𝑟/Г𝛾𝛾
(𝑖𝑖) 

theory experiment theory experiment 
 

2p3/2–1s  
6.5 31.6 31.1±2.8 0.46 0.45 

 

3p3/2–1s  

 

9.5 
 

66 
 

88.9±4.3 
 

1.92 
 

15 
 

3. Conclusion 
 

Prompt fission provides multilateral information about fission dynamics. We 
understand a lot of data concerning the 2p–1s nonradiative transitions. Argumentation of 
fission barrier and suppression of the fission mode is of great interest, as well as properties of 
the fragments.  

   At the same time, the most intriguing seems the contradiction between theory and 
experiment for the 3p–1s transition. The experimental non-radiative width is 7 times higher 
than the theoretical one. It seems highly heuristic to involve the processes of throwing the 
muon back. Otherwise, it can be the fine structure of the GDR. In this case, the muon turns 
out to be a unique tool for investigating GDR structure with high resolution by 100% definite 
multipolarity monochromatic photons. Note that fission channel is suppressed by about an 
order of magnitude in the case of the 2p–1s radiationless transition. But experimental cross-
section which is used in the calculations involves the photofission cross-section fully. How 
does this affect probability? And in the case of the 3p–1s transition, the suppression is not 
confirmed experimentally.  
 The simplest conjecture concerning the 3p–1s line broadening is based on the 
experimental non-radiative transition probability. As that is 15 times greater than the radiative 
one (see Table 2), therefore, broadening achieves as much as a factor of 15. That means that it 
increases from about 0.2 to 3 keV. At the same time, however, many details and questions 
remain unclear. There is also level doubling due to the non-radiative interaction, with the 
related broadening of the second radiative component within MeV scale. Moreover, the 
nucleus gets excited, properly speaking, not in the 3p–1s transition, but rather in the preceding 
cascade transition to this state, like 4d–3p, even 3d–3p (virtually) or similar. Correspondingly, 
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some missing intensities should manifest themselves in these transitions. The basis for such 
consideration is laid in Ref. [12] using an example of electronic atoms of 229Th.  
          Regarding the fine structure of the giant resonances, all what is said above concerning 
their fine structure especially refers to the 3d–2p nonradiative transition accompanied with 
excitation of LEOR. It is very appropriate to perform independent measurements on the 235U 
isotope and other actinides. Undoubtedly, continuation of this research will yield in new 
unexpected discoveries.  
 
References 
 

1. Wheeler J.A. // Phys. Rev. 1948. Vol.  73. P. 1252. 
2. Zaretski D.F., Novikov V.M.  Nucl. Phys. 1959. Vol. 14. P. 540; 1961. Vol.  28. P. 

177. 
3. Teller E., Weiss M.S. UCRL report N 83616. 1979; Trans. NY Acad. Sci. 1980. Vol. 

40. P. 222. 
4. Karpeshin F.F. and Nesterenko V.O.  J.  Phys. G: Nucl. Part.  Phys. 1991. Vol. 17. P. 

705. 
5. Balatz M.Y., Kondratiev L.N., Lansberg L.G. et al. Zh. Exp. Teor. Fiz.  38, 1715 

(1960); 39, 1168 (1961). 
6. State register of discoveries of the USSR. Non-radiative transitions in mesoatoms. 

B.M. Pontecorvo, D.F. Zaretsky, M.Ya. Balats, P.I. Lebedev, L.N. Kondratyev, Yu.V. 
Obukhov. No. 100 with priority dated June 17, 1959. 

7. Ch. Roesel, P. David et al. Z. Phys. A 340, 199 (1991). 
8. V.G. Soloviev. Teoria slozhnyh yader. Moscow: Energoatomizdat, 1979. 
9. I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor Jr., P.O. Tikkanen, and S. Raman, At. 

Data Nucl. Data Tables 81, 1 (2002); I.M. Band and M.B. Trzhaskovskaya, At. Data 
Nucl. Data Tables 55, 43 (1993); 35, 1 (1986). 

10. V.E. Zhuchko et al. Sov. J. Nucl. Phys. 28, 602 (1987). 
11. J.T. Caldwell et al. Phys. Rev. C 21, 1215 (1980). 
12. F.F. Karpeshin, I.M. Band, M.B.Trzhaskovskaya  and M.A. Listengarten, Phys. 

Lett.  B 372, 1 (1996).   


