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In this report author asserts that the names of Pierre-Simon Laplace, Gian-Carlo Wick, 
Enrico Fermi, Karl Pearson and Paul Langevin happened to be directly related to the historical 
problems of the random walk in the statistical theory and the slowing down of neutrons to 
thermal energy in the physics. The works of these authors have been instrumental in solving 
the mentioned problems by developing the exact mathematical expressions for the probability 
density of the sum of independent random variables. Several approaches to obtain these 
expressions will be shown. The most problematic were difficulties of getting the result in the 
form of an analytical formula for energy distribution of neutrons, which are slowed down by a 
fixed numbers of impacts with protons.  The author’s simplest way to deduce such formula is 
shown also, for the pedagogical reasons, for students interested in neutron physics.  
 

 

1. Introduction 
 

  Random walk is a traditional subject of the mathematical statistics initially introduced 
by Karl Pearson in 1905 [1] who defined it as sequences of ‘n’ steps taken in random 
directions of space, often with a random step length too. The problem to solve was to find the 
probability of “landing” at a given spot of the space after a giving number of steps. Both, the 
directions and the length of a particular step have to be chosen from a given probability 
distributions and are independent of these quantities for other steps. The mathematical 
formalism of random walks is often formally identical for numerous problems in physics, in 
particular for the probabilistic treatment of the neutron diffusion during the neutron 
movement in the state of the thermal equilibrium with a nuclei media after the fast neutrons 
are slowing down below the energy of about 1 eV. Here the neutron-nuclei collisions make 
the diffusion motion appear to be a random walk. The mean velocity of neutrons in this case 
is constant, but the time and the space are the random variables. In our report, we will discuss 
another problem – the problem of the fast neutrons (several MeV of the initial energy) 
slowing down by the elastic collisions with protons in an infinite hydrogenous media. At each 
collision neutrons lose a part of their remaining kinetic energy or even transfer all energy to 
nuclei.  For this case, the random variables in question are the neutron energies  during the 
neutron free flights between subsequent collisions and the number of collisions, ‘n’, leading to 
a given neutron energy. The random walk formalism assumes the probabilistic description of 
the slowing down phenomenon. The mean values and the dispersions around the mean for the 
quantities under study are obtained after deducing the proper probability distribution 
functions. 
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2. Neutron slowing down problem (“Fermi and Wick”)  
 
In the April of 1935 the Fermi’s group published [2] their most interesting result on 

the effect of an enormously increasing radioactivity of their samples, when the fast neutron 
source was surrounded by paraffin or water. The following are quotations from this paper: 
“We will give an interpretation of this phenomenon by assuming that neutrons are slowed 
down by impacts against hydrogen nuclei”, and more: “It is easily shown that an impact of a 
neutron against a proton reduces, on the average, the neutron energy by a factor of 1/e”. 
Continuing this subject, Gian-Carlo Wick published, about half a year later, his single author 
paper [3], writing in the beginning: “According to reports from several sides, the above 
passage in a paper by Professor Fermi is considered somewhat obscure. Since a more detailed 
explanation might be of interest also to others, it was thought advisable to make it generally 
known.” 

Wick begins that, from one side, it is follows from the neutron energy and momentum 
conservation in collisions with the isotropic scattering in CM-system, that the probability for 
the scattering from any energy E to energy E’ is the uniform distributed function 1/E 
(independent of energy E’), see also e.g. [4]. Therefore the mean neutron energy after one 
collision, <E’>, is equal to one half of the neutron energy E before the collision: <E’>=(E/2). 
Then after n sequential collisions, started with the fast neutron initial energy Eo (for example, 
E0 = 2 MeV), the ‘final’ neutron energy En is expected to be <En> =E0/(2)n , on the average. 
This is not in accord with the Fermi’s factor of 1/e. 

From the other side, Wick introduces the logarithmic variable ln(E/E’), known as the 
neutron energy decrement (the lethargy, presently) after one collision. Being a member of the 
Fermi’s close circle, he had knew, that the Fermi’s argument was based on the consideration 
of this variable.  Because the logarithmic energy decrement is the sum of the partial 
decrements due to each collision, it is subjected to the Bernoulli’s theorem of large numbers, 
so it will be possible to decide whether the mean energy is also the most probable one, or not. 
Defining the logarithmic random variable x=ln(E0/En) after n collisions, Wick writes in 
conclusion: “All further possible doubts may perhaps be answered  by giving the entire 
probability distribution function. One finds: 

                                              fn(x) = [xn-1/(n−1)!] e−x.”                                                 (1) 

It needs to keep in mind, that this Wick-Fermi probability density is the two-parameter 
function, and one hast to fix some value of the parameter n in order to have the energy 
distribution (in the ln scale) for this particular  value of n. With this probability law, the 
expression f(x)dx means the probability that the logarithmic variable  x lies between x and 
x+dx. It is also follows that <x> = n, and setting n=1 it confirms the Fermi’s 1/e statement as 
the statement for the logarithmic energy. Of course, the difference between factors 1/2n and 
1/en is of a little importance in many applications. Evidently however, that it was a matter of 
principle for Fermi to use the logarithmic variable to describe the randomness of a neutron’s 
energy as it slows down, and it was namely Wick who introduced into print for the first time 
the logarithmic energy decrement. The Wick’s Letter to the Editor of the Physical Review, 
however, does not contain the derivation of formula (1), which we will discuss as the Wick-
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Breit formula, because the first published derivation of it appeared in the work by Edward 
Condon and Gregory Breit [5], as is reviewed in Section 3. 

Concluding the present Section, let’s remark that in the course of time other physicists 
worked on this problem using the random work theory as well as the Boltzmann transport 
equation. Sometimes, the probabilistic approach was contrasted to the Boltzmann’s transport 
theory in the interpretation of the neutron slowing down results, though finally all agreed that 
the physical results are the same. The latest derivation, to our knowledge, was performed in 
the 1970’s by C.S. Barnett [6], who obtained the analytical expressions for the mean, variance 
and even higher moments of the probability distribution function by using the modern 
methods of the Random Walk problem. For the average fission neutron initial energy of       
E0 = 2 MeV and the ‘final energy’ of the slowing down phase En = 1 eV, Barnett finds          
<n> = 15.5±3.8, to be compared with <n> = 20.9 using the arithmetic average, and the value 
of the most probable number of collisions to the energy 1 eV, is npeak =14.5. 

3. Distributions of sums of neutron random variables (“Laplace, Condon-Breit”)  
 
There are similarities between papers of Wick [3] and of Condon, Breit [5]. The latter 

authors stated at the beginning (the quote): “The work grew out from a desire to understand 
statement due Fermi starting with: “It is easily shown…,” − the full statement is quoted 
already in the precedent Section. Initially, Breit and Condon have used the arithmetic random 
variable: the fractional ratio of energies xi= Ei/E0 and suggested to use the Laplace probability 
distribution function for the sum of such random variables, obtained at the end of the18th 
century. However, they soon switched to the logarithmic random variable u=u1 +u2 + …, by 
using x = exp(−u), that is −u = ln(x). One has to have in mind, that probability density 
functions for the individual logarithmic variables ui are not uniform but are exponential 
functions   fU(ui)= exp(−ui). 

Laplace [7] makes use of a uniform function fn(x) which is, in modern notation, written 
usually in the form of the following sum:     

fn(x) = [1/an(n−1)!]{xn−1– 𝐶𝐶1𝑛𝑛(x−a)n−1 +𝐶𝐶2𝑛𝑛(x−2a)n−1 − ….}. 

Here x is the random variable, i is the summation index, 𝐶𝐶𝑖𝑖𝑛𝑛 are the Bernoulli, that is, the 
binomial coefficients. The expression fn(x)dx gives the probability that the sum of n elements 
each taken at random from a given range 0 to a (a >0) of uniform distribution, will fall into 
the interval  from  x to x+dx. Laplace applied it to the study of different inclinations of the 
planets to ecliptic in astronomy. This is exact mathematical expression for the probability 
density of the sum of random variables, having the same uniform distribution each. However, 
it is presented as a series of the numerous terms, instead of an analytical formula, which is 
difficult to evaluate without computers. Nevertheless, during the early development of the 
theory of probability, a great amount of work was devoted to the study of the probability 
distribution of such sums. Looking back one may say that these studies became a starting 
point of the works by which the modern Probability theory was created. With the logarithmic 
variable, being smart enough, using recursion technique, Breit and Condon worked out 
solutions of the problem in analytic form for slowing down neutrons by protons: 

fn(u)du=e−uun−1du/(n−1)!   and                                              (2) 
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fn(x)dx=(ln(1/x))n−1dx/(n−1)!    

One has to keep in mind that quantities x in the Fermi-Wick and the Breit-Condon formulas 
are reciprocal numbers, by definitions. Finally, Condon and Breit presented Figures for 
several values of n showing how rapidly the neutron energy is reduced with number of 
impacts n increasing. 

       4. Langevin’s approach  

When the German and French governments were seeking for a name for the neutron 
center at Grenoble, they decided to honor scientists for their contribution not only for science 
but to the society in general. The Grenoble international neutron center was named the 
Institute Laue Langevin. Not being a nuclear nor neutron physicist, Langevin started to work 
on the moderation of the fast neutrons in media composed by nuclei heavier then hydrogen, 
following the Joliot-Curie’s suggestion at the end of 1940, when the German occupants 
imprisoned Langevin in Paris. He successfully concluded this study by several publications 
through 1941−1942 from the town of Troyes, where the Gestapo put him under the 
surveillance. These works became to be Langevin’s last ones, performed shortly before his 
death. As before for neutron moderation by protons by other authors, Langevin calculated the 
probability for a fast neutron to reduce its energy to E, E+dE by collisions with the any media 
nuclei after one, two, three, or any number of successive impacts. 

Starting from an neutron energy ratio C=E/E0 as an independent random variable, 
Langevin changed it to the logarithmic variable: C=exp(−x), or x=ln(E0/E) [8]. Using the 
theorem of the addition of probabilities, he obtained the total probability P after n collisions 
as the sum P = ∑ 𝑃𝑃𝑛𝑛𝑖𝑖 . 

Here P3, for example, is the probability for E=E3 to be in the interval ΔE when E1 and 
E2 impact does not happened. Langevin developed the original approach to represent 
probabilities and calculate them, which he named the “graphical, geometrical” one. He gave 
the Figures, for example, for the evaluation of the P2 – the value of the probability to obtain 
energy E2 after the 2nd impact of neutron with any nucleus. With his method Langevin 
independently deduced the already know for us the Laplace equation 

fn(x) = 1/[1/{(n−1)!(1 − α2 )n]}{xn−1– 𝐶𝐶1𝑛𝑛(x−a)n−1 +𝐶𝐶2𝑛𝑛(x−2a)n−1 −  (−)𝑖𝑖  𝐶𝐶𝑖𝑖𝑛𝑛(x−ia)n−1}. 

Here the new parameter is α = (M − m)/(M + m), where M is the mass of the colliding 
nucleus,  m −  the neutron mass and the parameter a is  a = 2ln(1/α). Langevin presented the 
analysis of this formula for several cases in his talks to the French Academy of Science at the 
several Sessions: Compt. Rendes Acad. Sci., Paris, v. 214, pages 517, 867, 889 (1942).  

        5. Summary 

We have reviewed historical papers on the problem of the distribution of the sums of 
the independent random variable, solved for the first time by Laplace (18th century) and on the 
moderated neutron’s energy spectra studied in 1930’s − 1940's. The problem of the neutron 
impacts by nuclei was treated probabilistically. The result was given for the energy 
distribution of neutrons slowing down as they scatter multiple times by a hydrogenous or by 
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more heavy media. This was done by G.C. Wick and by E.U. Condon, G. Breit. They 
introduced into print for the first time the neutron logarithmic energy decrement, known today 
as the lethargy variable, and gave solution in the analytical form for the case of impacts by 
protons.  The great French scientist Paul Langevin solved the problem of the neutron 
moderation in a heavier then hydrogenous medium by an original, his own, geometrical 
method. 

The author’s pedagogical derivation of the analytical formula for the probability 
density of the sum of n logarithmic random variables follows below in Appendix. 
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Appendix 
 

 By the definition, the probability density function of a sum of two independent random 
variables is the Convolution of their individual probability density functions. For a sum of n 
random variables a direct way is to perform the n-Fold Convolution, which is a fairly long 
procedure. Therefore, the author prefers to use the method of the mathematical Induction. It 
has three steps: 

 Step 1: the Induction Basis. It was already stated in Section 3 that probability density 
functions for the individual logarithmic variables ui are exponential functions            
fU(ui)= exp(−ui), and we will use this probability density for the n=1 variable and for other 
individual random variables by writing exponential   f(z) = exp(−z). In order to ‘guess’ the 
final analytical expression, we have also performed, as a preliminary step, convolutions 
for sums Z2= fZ1(z)+fZ1(z),  Z3=fZ2(z)+fZ1(z), Z4=fZ3(z)+f Z1(z). The obtained results are:  
Z2 = z exp(−z),  Z3 = (1/1·2) z2exp(−z),  Z4 = (1/1·2·3) z3 exp(−z).  The evidently visible 
patterns in these results, allows, preliminary, to write analytical expression for the sum of 
random logarithmic variables for the next Induction step. 

 Step 2: the Induction Hypothesis. With the patterns found above, we assume, that the sum 
of the (n−1) variables has the probability density function fZ(n−1)(z) = 1/(n−2!) zn−2 exp(−z). 
The goal of the next step will be to poof that fZn(z), which, by definition, is the sum         
fZ(n−1)(z) + fZ1(z) is described by the same analytical function but with the parameter  value 
n. 

 Step 3: the Induction step. To proof, we need to calculate the convolution of two 
functions: 

fZn(z) = ∫ 𝑓𝑓𝑧𝑧1(𝑧𝑧 − 𝑠𝑠)𝑓𝑓𝑧𝑧(𝑛𝑛−1)(𝑠𝑠)𝑑𝑑𝑠𝑠  ∞
0  =  ∫ 𝑒𝑒𝑒𝑒𝑒𝑒�−(𝑧𝑧 − 𝑠𝑠)� 𝑧𝑧𝑛𝑛−2/�(𝑛𝑛 − 2)!�𝑒𝑒𝑒𝑒𝑒𝑒 (−𝑧𝑧)𝑑𝑑𝑠𝑠  𝑧𝑧

0 = 

=exp(−z)/((n−2)!)∫ 𝑠𝑠𝑛𝑛−2𝑧𝑧
0 𝑑𝑑𝑠𝑠=exp(−z)/((n−2)!(n−1))𝑧𝑧𝑛𝑛−1=exp(−z)/((n−1)!)𝑧𝑧𝑛𝑛−1.          (3) 

Conclusion: the induction method gave us the formula (3), which is the same as expression 
(1) of Wick in Section 2, or the expression (2) of Condon and Breit in Section 3 as well. 
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