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Because of the importance of moments of inertia in describing and exhibiting the nuclear 
properties of the collective motion inside the nucleus, a theoretical nuclear model depends on 
an effective moment of inertia as a function of nuclear spin is introduced for the first time to 
describe and analyze fourteen superdeformed rotational bands SDRB’s of Mercury and 
Thallium nuclei in the A∼190 mass region. For each band the band-head spins and the model 
parameters are extracted by fitting the calculated transition energies with experimental ones in 
order to minimize the root mean square deviations between them. The calculated transition 
energies are in good agreement with the experimental and other theoretical model results 
reported in the literature. The values of the adopted model parameters are used to calculate 
rotational frequencies ℏω, kinematic J(1) and dynamic J(2) moments of inertia, and the 
variation of J(1) and J(2) against ℏω are examined. The ∆I=1 energy staggering presented in the 
signature partner pairs of the studied SDRB’s in odd-mass superdeformed Hg and Tl nuclei 
are investigated and parameterized by proposing a staggering parameters depends on the two-
way cross talk ∆I=1 dipole transition linking the two signature partners. The presence of ΔI=2 
energy staggering in six SDRB,s of the even-even nucleus 194Hg and odd-odd nucleus 194Tl 
have been investigated by calculating a staggering parameter which represent the finite 
difference approximation to the fourth order derivative of the transition energies at a given 
spin.  
 

1. Introduction 

Superdeformation is one of the most interesting examples of collective phenomena in 
atomic nuclei. Recently with the high efficiency of large detector arrays such Gamma-sphere 
and Euroball it is possible to identify superdeformed rotational bands (SDRB’s) in several 
mass A∼130,150,190,80,60,70 and 90 regions [1]. The A∼190 mass region is of special 
interest, since SD states were observed down to quite low spin and also show smooth rise in 
the dynamical moments of inertia as rotational frequency increase, which is associated [2,3] 
with the successive gradual alignments of a pair of nucleons occupying specific high N-
intruder orbital’s in the presence of pairing correlations.  

For the SD bands, γ-ray transition energies are the only quantity detected, the exact 
excitation energies, spins and parities of the levels of SD bands are not known, because it is 
difficult to observe the link between the SD band and the normally deformed states with 
known spins. Several theoretical approaches to predict the spins of SD bands were suggested 
[4‒11]. Some SDRB’s show unexpected staggering effects in the γ-ray transition energies. At 
high rotational frequencies ∆I=2 staggering was observed [12, 13]. A SD band is perturbed 
and two sequences emerge with an energy splitting ranging from some hundred eV to few 
KeV. The two sequences have spin values I+4n and I+4n+2 with n=0,1,2,3,..., respectively. 
The ∆I=2 staggering effect was interpreted in a variety of ways [14‒17]. Recently the ∆I=2 
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staggering has been shown in the ground bands of normally deformed [ND], nuclei like 
thorium nuclei [18]. 

The ∆I=1 staggering is familiar for a long time in ND odd-A nuclei [19,20]. Most of 
SD bands observed in odd-A nuclei in the mass region A∼190 are signature partner pairs, 
each pair show a large amplitude ∆I=1 staggering [21‒25] and also the band-head moments of 
inertia of each pair are almost identical. The ∆I=1 staggering has attracted much attention and 
interest, and has thus become one of most frequently detected subjects. In this paper, we 
suggested a collective rotational model depends mainly on the moments of inertia as a 
function of nuclear spin (an effective moments of inertia model). For SDRB’s of signature 
partners of Hg and Tl nuclei, the model is used to assign the level spins, analyze the behavior 
of kinematic and dynamic moments of inertia and to investigate the ∆I=1 staggering 
phenomenon using two energy staggering parameters. 
 

2.  Outline of the Proposed Model 

For axially symmetric deformed nuclei, the low spin states are generally interpreted on 
the basis of the adiabatic approximation, which assumes that the rotational frequency is small 
compared with that characterizing the intrinsic structure such that the rotation doesn’t strongly 
perturb the intrinsic motion. For nuclei with a static deformation the rotational energy 
spectrum in the strong coupling limit corresponds to that for a rigid rotor and follows the Bohr 
formula 

𝐸𝐸(𝐼𝐼) = ℏ2

2𝐽𝐽
𝐼𝐼(𝐼𝐼 + 1),                                                               (1)   

 
where J is the moment of inertia. The non-adiabatic corrections, evidenced through the 
deviation from the I(I+1) dependence are usually ascribed for K=0 rotational bands to 
phenomenon like the rotation vibration interaction, centrifugal stretching, Coriolis anti-
pairing, higher order crossing effect etc, and may be included phenomenologically by writing 
the rotational energy transition as a power series expansion in I(I+1) . However, for K≠0 
bands, the non-adiabatic effects due to Coriolis interaction term in the Hamiltonian should 
also be taken into account. In general it introduces another series whose successive individual 
terms alternate in sign with the level and including decoupling terms. An extension of the 
rotational formula (1) was chosen in order to take into account the nuclear softness, which is a 
measure for the relative initial variation of the moment of inertia J with respect to the nuclear 
spin I. 
        We will parameterize the level energies of SDRB’s by using a new theoretical model 
depends on an effective moment of inertia Jeff as a function of nuclear spin I, the model reads 
 

                                           𝐸𝐸(𝐼𝐼) = ℏ2

2𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)
𝐼𝐼(𝐼𝐼 + 1),                                                (2) 

where 
 

                                        Jeff(I) = Jo [1–Y(I)]                                                   (3)  
with 

 
                         Y(I) = β[I(I + 1)] + γ[I(I + 1)]2 + δ[I(I + 1)]3.                               (4) 
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The new model contains four parameters: Jo, β, γ, δ.  
For SD bands, γ-ray transition energies Eγ(I) are the only quantity detected. The Eγ(I) 

between levels differing by two units of angular momentum is:   
                      

                                               Eγ(I) = E(I) ‒ E(I‒2)                                                         (5) 
 

Using the experimental intraband E2 transition energies Eγ(I) one can extract the rotational 
frequency ℏω, dynamic J(2) and kinematic J(1) moments of inertia as follows: 
 

                ћ𝜔𝜔 = 1
4
�𝐸𝐸𝛾𝛾(𝐼𝐼 + 2 → 𝐼𝐼) + 𝐸𝐸𝛾𝛾(𝐼𝐼 → 𝐼𝐼 − 2)�   (𝑀𝑀𝑀𝑀𝑀𝑀),                              (6) 

                                   𝐽𝐽(2) = 4
𝐸𝐸𝛾𝛾(𝐼𝐼+2→𝐼𝐼)−𝐸𝐸𝛾𝛾(𝐼𝐼→𝐼𝐼−2)       (ћ2𝑀𝑀𝑀𝑀𝑀𝑀−1),                                    (7) 

                                    𝐽𝐽(1) = 2𝐼𝐼−1
𝐸𝐸𝛾𝛾(𝐼𝐼→𝐼𝐼−2)       (ћ2𝑀𝑀𝑀𝑀𝑀𝑀−1),                                                      (8) 

where ∆Eγ(I) is the difference between two consecutive γ-ray energies in the cascade            

        ∆Eγ(I) = Eγ(I + 2) ‒Eγ(I)                                                          (9) 

It is noticed that, while J(1) depends on the spin I preposition  J(2) does not. 
 
3. Theory of ∆I=1 Staggering in Signature Partners in SDRB’s 

        Signature is a quantum number specifically appearing in a deformed intrinsic 
system. It is related to the invariance of a system with quadruple deformation under a rotation 
of 180° around a principle axis. For an odd-A nuclei the signature quantum number can take 
two different values α= (‒1)I-1/2. In SDRB’s two rotational bands with sequence of levels 
differing in spin by one unit 1ℏ is divided into two branches each consisting of levels differing 
in spin by two units 2ℏ and classified by the signature quantum number α= ±1/2 respectively. 
The energetically forward branches formed by these spin I states that satisfy I ‒ j = even, 
where j is the total angular momentum of corresponding single-particle state. An interesting 
phenomenon is the ∆I=1 signature splitting in SD bands in a lot of signature partners 
depending on the transition energies versus spin, a staggering or zigzag pattern can be seen. 
These irregularities are attributed to the decoupling effect. To exhibit the ∆I=1 staggering in 
signature partner pairs off odd SD bands we use two staggering parameters: 

(i) The three point formula, one must extract the differences between the average 
transitions Eγ(I+2-→I) and Eγ(I) energies in one band and the transition Eγ (I+1-→I‒1) 
energies in the signature partner 

 

                              ∆2𝐸𝐸γ(𝐼𝐼) = 1
2
�𝐸𝐸γ(𝐼𝐼 + 2) + 𝐸𝐸γ(𝐼𝐼) − 2𝐸𝐸γ(𝐼𝐼 + 1)�                                    (10) 

                                            = (1/2)[Eγ(I + 2) + 2Eγ(I + 1)] ‒Eγ2(I)                                      (11) 
 
with Eγ2(I) = E(I) ‒ E(I‒2). The staggering parameter ∆(2)Eγ(I) includes three consecutive 
transitions energies.     

(ii) The EGOS(I) staggering parameter: It is useful to introduce the quality EGOS(I) 
which represents the Gamma transitional energy over spin 
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                                            EGOS(I) = Eγ1(1) / 2I                                                      (12) 
 
with Eγ1(I) = E(I) ‒ E(I ‒1). For pure rotator E(I) = A(I)(I + 1), EGOS(I)=2A that is a 
constant. 
 
4.   Test of ΔI=2 staggering in Even-Even and Odd-Odd Nuclei 

Superdeformed band splits into branches, the difference in spins in each branch is 4ℏ 
and the spin difference between the two branches is 2ℏ, that is the spin values of the two 
branches are I, I+4, I+8,..and I+2,I+6,I+10,….respectively. The presence of two regular ΔI =4 
families in SD band suggested an explanation based on a fourfold state symmetry. To exhibit 
the an anomalous ΔI =2 staggering effects which appear in transition energies, we extended 
the proposed model equation (2) by adding to the excitation energy E(I) a linear and quadratic 
spin depended behavior δE(I). The excitation energy becomes  
 

                                             𝐸𝐸(𝐼𝐼) = ℏ2

2𝐽𝐽𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼)
𝐼𝐼(𝐼𝐼 + 1) + 𝛿𝛿𝐸𝐸(𝐼𝐼),                                    (13)  

where the additional term reads  
 

                     𝛿𝛿𝐸𝐸(𝐼𝐼) = �

𝑎𝑎𝐼𝐼2 + 𝑏𝑏𝐼𝐼   for      𝐼𝐼 = 8,12,16, …
                                        9,13,17, …

𝑎𝑎𝐼𝐼2 + 𝑐𝑐𝐼𝐼 + 𝑑𝑑    for   𝐼𝐼 = 10,14,16, …
                                              11,15,19, …

                              (14) 

 
Therefore, we can write the incremental δEγ(I) between levels differing by two units 

of angular momentum as:  
 

                    𝛿𝛿𝐸𝐸𝛾𝛾(𝐼𝐼) = �
(4𝑎𝑎 + 𝑏𝑏 − 𝑐𝑐)𝐼𝐼 + (−4𝑎𝑎 + 2𝑐𝑐 − 𝑑𝑑)
(4𝑎𝑎 − 𝑏𝑏 + 𝑐𝑐)𝐼𝐼 + (−4𝑎𝑎 + 2𝑏𝑏 + 𝑑𝑑)                                 (15) 

 
We notice that the additional term to the excitation energy δE(I) contains a linear and 
quadratic spin dependent, while in transition energy, the additional term δEγ(I) contains 
constant and linear spin dependent. To explore more clearly the ∆I=2 energy staggering for 
each band, the deviation of the transition energies from a smooth reference ∆(4)Eγ(I) is 
determined by calculating the finite difference approximation of the fourth order derivative of 
the transition energies Eγ(I) as a given spin I. This smooth reference is given by  
 

∆4𝐸𝐸𝛾𝛾(𝐼𝐼) =   1 
 16 

[𝐸𝐸𝛾𝛾(𝐼𝐼 + 4) − 4𝐸𝐸𝛾𝛾(𝐼𝐼 + 2)+6𝐸𝐸𝛾𝛾(𝐼𝐼) − 4𝐸𝐸𝛾𝛾(𝐼𝐼 − 2) + 𝐸𝐸𝛾𝛾(𝐼𝐼 − 4)].        (16) 
 

This formula includes five consecutive Eγ values. For pure rotator, one can easily notice that 
in this case ∆(4)Eγ(I) vanishes. We limit the staggering parameters S(4)(I) as the difference 
between the experimental  ∆(4)𝐸𝐸𝛾𝛾

𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) and the calculated reference ∆(4)𝐸𝐸𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) such that 
 

                                        S(4)(𝐼𝐼) = ∆(4)𝐸𝐸𝛾𝛾
𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼) − ∆(4)𝐸𝐸𝛾𝛾

𝑟𝑟𝑒𝑒𝑟𝑟(𝐼𝐼).                                      (17) 
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5. Numerical Results and Discussion 

In our calculations all γ-ray transition energies Eγ2(I) within each band are assumed to 
be ∆(I) = 2(Io, Io + 2, Io + 4, ...). Our selected data set includes four signature partner pairs, 
namely 191Hg(SD2, SD3),193Hg(SD1, SD2),193Tl(SD1, SD2), and 193Tl(SD1,SD2), three bands 
SD1,SD2,SD3 in the even-even nucleus 194Hg and three bands SD1,SD3,SD5 in the odd-odd 
nucleus 191Tl. To parameterize the level spins and the model parameters for each SD band, we 
assumed various values of band-head spin Io and then the parameters Io , β, γ, δ in formula (2) 
can be adjusted by using a computer simulated search program in order to obtain a minimum 
root mean square deviation of the calculated transition energies 𝐸𝐸𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼) 
 

χ = �
1
𝑁𝑁
��

�𝐸𝐸𝛾𝛾𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑖𝑖) − 𝐸𝐸𝛾𝛾
𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼𝑖𝑖)�

𝛿𝛿𝐸𝐸𝛾𝛾
𝑒𝑒𝑒𝑒𝑒𝑒(𝐼𝐼𝑖𝑖)

�
2

𝑖𝑖=1

 

 
from the experimental energies 𝐸𝐸γ

exp(𝐼𝐼)  where N is the number of data points considered and 
δ𝐸𝐸γ

exp(𝐼𝐼)  are the experimental errors in Eγ(I). The fitted procedure is repeated with spin Io 
fixed at the nearest half integer. Table 1 gives the band-head spin I◦ and the adopted best 
model parameters. The calculated results of the γ-ray transition energies Eγ(I) and the 
comparison with experimental data are illustrated in Figure 1 for the four signature partners 
pairs. Very good agreement between calculation and experiment is obtained. The calculated 
transition energies Eγ(I) with our present proposed effective moment of inertia model are 
consistent with other theoretical models reported in references [6,17,23]. Using the assigned 
spin values and the calculated transition energies Eγ(I) and with the help of equations (6,7,8), 
the rotational frequencies ℏω, the dynamic J(2) and the kinematic J(1) moments of inertia of 
our selected four signature partner pairs SDRB’s are also obtained. The moments of inertia 
J(1) and J(2) are plotted as a function of rotational frequency  ℏω in Figure 2 compared to the 
experimental ones. It is seen that J(1) is smaller than J(2) and J(2) of most SD bands increases 
with increasing ℏω due to the alignment of angular momentum of paired nucleons in high - j 
low Ω-intruder orbital’s with the collective rotation, and the gradual disappearance of pairing 
correlation with increasing frequency [26,27]. 
 

Table 1. The estimated bandhead spin I0 and the adopted best model parameters Jo , β, γ, δ  
obtained from the fitting procedure for the studied signature partners in the A-odd 

superdeformed Hg and Tl nuclei. The experimental lowest transition energies Eγ(I0+2→I0) for 
each SD band is also given in [1]. 

SD bands 
 
parameters 

191Hg 
SD2         SD3 

193Hg 
SD1         SD2 

193Tl 
SD1          SD2 

195Tl 
SD1           SD2 

Eγ(I0+2→I0)(KeV) 
 

252.4 272.0 233.2 254.0 206.6 227.3 146.2 167.5 

I0      (ħ) 10.5 11.5 9.5 10.5 8.5 9.5 5.5 6.5 

J0      (ħ2MeV-1) 94.0749 93.8498 89.1852 92.9347 95.5604 95.5059 98.8059 94.8027 
β     (10-5) -4.2582 -5.0746 -19.237 -5.6552 -4.6006 -4.4057 -4.4057 -4.6227 
γ     (10-8) 0.6559 0.9384 22.549 1.2401 0.8664 1.1846 1.1846 0.5608 
δ     (10-12) -1.2630 -2.1692 -330.41 -3.3991 -2.0396 -3.9814 -3.9814 -0.8506 



Proceedings of ISINN-30, JINR, E3-2024-42, Dubna, 2024, p.55 – 67 

To exhibit the ∆I=1 energy staggering in our studied signature partners, the staggering 
parameters ∆(2)Eγ(I) equation (11) and EGOS (I) equation (12) have been calculated and 
plotted as a function of nuclear spin I in Figures 3 and 4. Zigzag pattern are observed. It is 
seen that the signature partners show large amplitude staggering for the three point formula 
∆(2)Eγ(I), for all ranges of spin, while for EGOS(I) only for high spin states. 

In the framework of our proposed model with the additional spin dependent behavior 
equation (13) for the gamma-ray transition energies, the seven parameters occurring in 
equation (13) are obtained by using the above simulation procedure. Table 2 shows bandhead 
spin Io and the best fitted values of the model parameters β, γ, δ, a, b, c, d. Figure 5 illustrate 
the calculated transition energies compared to the experimental ones for the three bands 
SD1,SD2,SD3 in 194Hg and the three bands SD1,SD3,SD5 in 194Tl. Also, the calculated 
results of kinematic J(1) and dynamitic J(2) moments of inertia as a function of rotational 
frequency ℏω and compared with experimental J(2) values as shown in Figure 6. We 
investigated and exhibit the ΔI=2 energy staggering in the even-even and odd-odd nuclei 
194Hg and 194Tl by calculating the staggering parameter S(4)(I) for each band and plotting it 
versus nuclear spin I in Figure 7. A significant staggering has been observed.   

Table 2. The adopted best model parameters and bandhead spin I0 for the six SD bands in 
even-even 194Hg and odd-odd 194Tl nuclei which exhibit ΔI=2 energy staggering. The 

experimental lowest transition energies Eγ(I0+2→I0) for each SD band is also given in [1]. 
SD bands 

 
parameters 

                          194Hg 
    SD1                 SD2               
SD3  

                   194Tl  
    SD1                SD3               SD5 

Eγ(I0+2→I0)(KeV) 211.7 200.79 200.0 268.0 240.5 187.9 
I0      (ħ) 10 8 9 12 10 8 

J0      (ħ2MeV-1) 89.4338 94.0650 94.9974 99.7319 95.2703 101.5143 
β     (10-5) -7.0688 -4.3151 -3.1054 -2.6195 -3.7740 -2.4573 
γ     (10-8) 0.7376 0.3595 0.3857 0.1372 0.2848 1.2076 
δ     (10-12) 
a     (10-4) 
b     (10-4) 
c     (10-4) 
d     (10-4) 

-11.1990 
1.481(10-4) 
8.886 (10-4) 
2.9627(10-4) 
23.702(10-4) 

-0.3811 
-2.9 (10-3) 
-1.74(10-3) 
-0.58(10-3) 
-4.64(10-3) 

-0.7188 
-4.25(10-3) 
-2.55(10-3) 
-8.5 (10-4) 
-6.8 (10-3) 

-0.0898 
1.0187 (10-3) 
6.1125(10-3) 
2.0375(10-3) 
16.3 (10-3) 

-0.2687 
1.75 (10-3) 
10.5 (10-3) 
3.5 (10-3) 
28.0 (10-3) 

-0.0741 
-0.5181(10-3) 
-3.1090 (10-3) 
-1.0363 (10-3) 
-8.2908 (10-3) 

 
5. Conclusion 

Four pairs of signature partners in Hg and Tl nuclei are examined in framework 
of new theoretical model including four parameters and depend on effective moment of inertia 
as a function of nuclear spin. The spins of the levels and the model parameters for each band 
are extracted by using fitting search program. The calculated γ-ray transition energies with the 
present proposed model agree very well with the experimental data. The variations of the 
kinematic J(1) and dynamic J(2) moments of inertia as a function of the rotational frequency ℏω 
have been examined and analyzed. We noticed that J(2) is larger than J(1) and both increases 
with increasing ℏω. We investigated the ∆I =1 staggering in signature partners by two 
staggering parameters. The first represent the difference between the average transitions 
I+2→I and I→I‒2 energies in one band and the transition I+1→I‒1 energies in the other band 
of the signature partner pair. The second staggering parameter represents the γ energy over 
spin. The four signature partner pairs exhibit staggering with large amplitudes. The presence 
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of ∆I =2 energy staggering in six SDRB,s of 194Hg and 194Tl have been examined in the 
rotation of additional spin dependent term to the transition energy and introducing a 
staggering parameter including five consecutive transition energies. 

 

 

 

 

 
Figure 1. Calculated  γ-ray transition energies Eγ(I) versus spin I for the 4 pairs of signature 

partners SD bands 191Hg (SD2,SD3) and 193Hg (SD1,SD2), 193Tl (SD1,SD2) and 195Tl(SD1,SD2)  
and compared to the experimental ones [1]. Solid curves indicate calculated Eγ(I) and closed 

circles indicate experimental values. 
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Figure 2. Calculated kinematic J(1)(open circles) and dynamic J(2) (closed circles) moments of 

inertia as a function of rotational frequency ћω for 191Hg, 193Hg,193Tl and 195Tl nuclei. The 
experimental data are marked by closed circles with error bars and are taken from [1]. 
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Figure 3. The calculated ∆I = 1 staggering parameter  ∆2Eγ(I) as a function of nuclear spin I for 
the signature partner pairs 191Hg(SD2,SD3) ,193Hg (SD1,SD2),193Tl (SD1,SD2) and 

195Tl(SD1,SD2). 
 

 

 
Figure 4. The calculated ∆I=1 staggering index EGOS(I) as a function of nuclear spin I for the 
signature partner pairs 191Hg(SD2,SD3),193Hg(SD1,SD2),193Tl(SD1,SD2) and 195Tl(SD1,SD2). 
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Figure 5. Calculated γ-ray transition energies Eγ(I) versus spin I for the three SD bands 
194Hg(SD1,SD2,SD3) and 194Tl(SD1,SD3,SD5) and compared to the experimental ones [1]. Solid 

curves indicate calculated Eγ(I) and closed circles indicate experimental values. 
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Figure 6. Calculated kinematic J(1)(open circles) and dynamic J(2) (closed circles) moments of 

inertia as a function of rotational frequency ћω for 194Hg(SD1,SD2,SD3) and 194Tl(SD1,SD3,SD5)  
nuclei. The experimental data are marked by closed circles with error bars and are taken from [1]. 
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Figure 7. The calculated ∆I = 1 staggering parameter S(4)(I) as a function of nuclear spin I 
for the signature partner pairs 194Hg(SD2,SD3). 

 
 

  

   

   
 
Figure 8. The calculated  ∆I =2 staggering parameter  S(4)(I) as a function of nuclear spin I for the 

three SD bands 1,2,3 in even-even 194Hg nucleus and the three SD bands 1,3,5 in odd-odd 194Tl 
nucleus. 
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