233U(n,F) Prompt Fission Neutron Spectra

V.M. Maslov*

220025 Minsk, Byelorussia

*E–mail: <u>mvm2386@yandex.ru</u>

Simultaneous analysis of measured data for $^{235}U(n,F)$, $^{239}Pu(n,F)$ and $^{233}U(n,F)$ maintains stronger justification for the predicted prompt fission neutron spectra (PFNS) of 233 U(*n,F*). Pre–fission neutrons influence the partitioning of fission energy between excitation energy and total kinetic energy of fission fragments. For the reactions $^{233}U(n,F)$ and $^{235}U(n,F)$ shape of prompt fission neutron spectra strongly depends on relative positions of (*n,xnf*) and (*n,xn*) reaction thresholds. The correlation of these peculiarities with emissive fission contributions (n, xnf) to the $\sigma_{n,F}$ and competition of reactions $(n, n\gamma)$ and $(n, xn)^{1...x}$ is established. Exclusive neutron spectra $(n, xnf)^{1, x}$ are consistent with $\sigma_{n,F}$ of $^{233}U(n,F)$ and $^{232}U(n,F)$. Initial model parameters for $^{233}U(n,F)$ PFNS are fixed by description of PFNS of ²³³U($n_{th}F$) and ratios of PFNS of ²³³U($n_{th}F$)/ ²³⁵U($n_{th}F$) and ²³⁹Pu($n_{th}F$)/ ²³³U($n_{th}F$). We predict the ²³³U(*n*,*xnf*)^{1,.*x*} exclusive pre-fission neutron spectra, exclusive neutron spectra of $^{233}U(n,xn)^{1...x}$ reactions, total kinetic energy TKE of fission fragments and products, observed and partials of average prompt fission neutron number and observed PFNS of $^{233}U(n,F)$.

INTRODUCTION

 Fissile nuclides 233U may build-up in breeder or hybrid reactors. Nuclear data for ²³³U+*n* interaction, with the exception for $\sigma_{n,F}$ data, are scarce, especially as regards PFNS *S*(*ε*,*E_n*) of ²³³U(*n*,*F*) in the range of ²³³U(*n,xnf*)^{1,.*x*} reaction. Data on PFNS *S*(*ε*,*E_n*) at $E_n \sim 14.3$ MeV [1] remained the only available before long. Since model analysis in [1] was then over-simplified, relative contributions of pre- and post-fission neutrons in [1] disagree with later predictions [2, 3]. Measured data at $E_n \sim E_{th}$ [4], $E_n \sim 0.55$ MeV [5], and data [1] as well, were abandoned in all versions of BROND/ROSFOND, ENDF/B, JEFF and JENDL data libraries. The data of recent PFNS measurements for $^{233}U(n_{th},f)$ [6], $^{235}U(n_{th},f)$ and ²³⁹Pu(n_{th} f) [6, 7] are discrepant with the data of [4]. Lumping [4, 6, 7] data in a spline fitting procedure of [8] would change predicted PFNS shapes of ²³³U($n_{th}f$), ²³⁵U($n_{th}f$) and ²³⁹Pu($n_{th}f$) drastically (see Fig. 1).

In differential PFNS data for ²³⁵U and ²³⁹Pu for $E_n \sim 1.5-20$ MeV and $\varepsilon \sim 0.01-10$ MeV [9–11] strong variations of average PFNS energies $\langle E \rangle$ were observed around (n, xnf) thresholds. $\langle E \rangle$ is rough signature of PFNS, however it was established in [9–11] that the relative amplitude of $\langle E \rangle$ variation in case of ²³⁹Pu(*n*,*F*) reaction is much weaker than in case of ²³⁵U(*n,F*). That is due to influence of (*n,xnf*) reactions on fission observables when fission is preceded by pre-fission neutrons. In case of ²³³U(*n,F*) reactions similar variations of $\langle E \rangle$ were predicted in [2, 3, 8]. We intend to predict PFNS of ²³³U(*n,F*) at $E_n \sim E_{th}$ –20 MeV.

Fig.1. Prompt fission neutron spectra of ²³³U(n_{th}) relative to Maxwellian, $\langle E \rangle$ = 2.0564 MeV.

233 U(*n,f*) PROMPT FISSION NEUTRONS

Recent PFNS data for $^{233}U(n_{th},f)$ [6] added even more controversy: at range 0.02<*ε*<5 MeV they support the evaluations of ENDF/B–VII [12] and JENDL-4.0 [13], while PFNS of both libraries disagree with data [4]. Data [4] are presented as spline approximation of [8], which summons empirical features of consistent analysis of ²³³U($n_{th}f$), ²³⁵U($n_{th}f$), ²³⁹Pu(n_{th} f) and ²⁵²Cf(*sf*) measured PFNS data [4]. In the energy range 5< ε <11 MeV data of [6] for 233 U(*n,f*) support the evaluation of [8], which is based on data [4] fitting at 0.02<*ε*<9.3 MeV.

The comparison of PFNS measured data [4, 6, 7, 9–11] for $^{233}U(n,f)$, $^{235}U(n,f)$ and ²³⁹Pu(*n,f*) in the range $E_{th} < E_{n} < E_{nrf}$ shows that enhanced soft neutron yield, $\epsilon \le 1$ MeV is a common feature except PFNS of [6, 7]. In [6, 7] PFNS of $^{233}U(n_{th}f)$, $^{235}U(n_{th}f)$ and $^{239}Pu(n_{th}f)$ were measured relative to spontaneous fission neutron spectra (SFNS) of ²⁵²Cf(*sf*). After various correction are applied to get absolute PFNS values, a number of systematic errors/uncertainties may appear, while the uncorrected cross ratios of various $^{233}U(n_{th}f)$, ²³⁵U(n_{th} ,f) and ²³⁹Pu(n_{th} ,f) PFNS pairs might be quite sterile in that respect.

Fig. 2. Ratio of PFNS of ²³³U(n_{th} f) and ²³⁵U(n_{th} f) for thermal neutron-induced fission.

The ratios of PFNS for ²³⁹Pu $(n_{th},f)/^{233}$ U (n_{th},f) and ²³³U $(n_{th},f)/^{235}$ U (n_{th},f) [6, 7] and [4], contrary to absolute PFNS of $^{233}U(n_{th},f)$, $^{235}U(n_{th},f)$ and $^{239}Pu(n_{th},f)$, quite agree with each other (Fig. 2). At $E_n \sim E_{th}$ and $E_n \sim 0.5$ MeV the ratios of calculated PFNS of ²³⁹Pu(*n,f*) and ²³⁵U(*n,f*) in the range $0.01 \ll \ll 10$ MeV weakly depend on the E_n . Calculated PFNS ratios of [2, 3, 8, 14], as well as present calculation, at $E_n \sim E_{th}$ and $E_n \sim 0.5$ MeV almost coincide with PFNS ratios ²³⁹Pu $(n_{th},f)^{233}$ U (n_{th},f) and ²³³U $(n_{th},f)^{235}$ U (n_{th},f) of [4, 6, 7]. It might be concluded that the hardest prompt fission neutrons are emitted in $^{239}Pu(n_{th}f)$ reaction, while the softest PFNS is that of ²³⁵U(n_{th} ,f), PFNS of ²³³U(n_{th} ,f) takes intermediate position. Renormalization of model parameters at $E_n \sim E_{th}$ after fitting data on total kinetic energy of fission fragments [15] amounts to rather small changes of PFNS: for ²³⁹Pu(*n*, *f*) a decrease by ~2–3% at ε <1 MeV, for ²³⁵U(*n, f*) and ²³³U(*n,f*) PFNS - shifts by ~1–2% [2, 3].

233U(*n,xnf*) PROMPT FISSION NEUTRONS

Pre–fission neutrons emerging when $E_n \gtrsim E_{nnf}$, influence the PFNS $S(\varepsilon, E_n)$ shape, total kinetic energy of fission fragments E_F^{pre} and fission products E_F^{post} , prompt fission neutron number $v_p(E_n)$, mass distributions and other fission observables. PFNS $S(\varepsilon,E_n)$ is a superposition of exclusive spectra of pre-fission neutrons, (n, nf) ¹, (n, nf) ¹, $(n, 2nf)$ ^{1,2}, $(n,3nf)^{1,2,3}-d\sigma_{nxnf}^{k}(\varepsilon,E_n)/d\varepsilon$ (*x*=0, 1, 2, 3; *k*=1,…,*x*), index *x* denotes the fission chance of ^{234-*x*}U and spectra of prompt fission neutrons, emitted by fission fragments, $S_{A+1-x}(\varepsilon, E_n)$:

$$
S(\varepsilon, E_n) = \tilde{S}_{A+1}(\varepsilon, E_n) + \tilde{S}_A(\varepsilon, E_n) + \tilde{S}_{A-1}(\varepsilon, E_n) + \tilde{S}_{A-2}(\varepsilon, E_n) =
$$

\n
$$
v_p^{-1}(E_n) \cdot \left\{ v_{p1}(E_n) \cdot \beta_1(E_n) S_{A+1}(\varepsilon, E_n) + v_{p2}(E_n - \langle E_{mf} \rangle) \beta_2(E_n) S_A(\varepsilon, E_n) +
$$

\n
$$
+ \beta_2(E_n) \frac{d\sigma_{nnf}^1(\varepsilon, E_n)}{d\varepsilon} + v_{p3}(E_n - B_n^A - \langle E_{n2nf}^1 \rangle) - \langle E_{n2nf}^2 \rangle \right) \beta_3(E_n) S_{A-1}(\varepsilon, E_n) + \beta_3(E_n) .
$$

\n
$$
\left[\frac{d\sigma_{n2nf}^1(\varepsilon, E_n)}{d\varepsilon} + \frac{d\sigma_{n2nf}^2(\varepsilon, E_n)}{d\varepsilon} \right] + v_{p4}(E_n - B_n^A - B_n^{A-1} - \langle E_{n3nf}^1 \rangle) - \langle E_{n3nf}^2 \rangle - \langle E_{n3nf}^3 \rangle .
$$

\n
$$
\beta_4(E_n) S_{A-2}(\varepsilon, E_n) + \beta_4(E_n) \left[\frac{d\sigma_{n3nf}^1(\varepsilon, E_n)}{d\varepsilon} + \frac{d\sigma_{n3nf}^2(\varepsilon, E_n)}{d\varepsilon} + \frac{d\sigma_{n2nf}^3(\varepsilon, E_n)}{d\varepsilon} \right] \}
$$
 (1)

In equation (1) $\tilde{S}_{A+1-x}(\varepsilon, E_n)$ is lumped contribution of *x*-chance fission to the observed PFNS $S(\varepsilon, E_n)$, $\langle E_{nxnf}^k \rangle$ – average energy of exclusive pre-fission neutron of $(n, xnf)^{1...x}$ reaction, spectra $S(\varepsilon, E_n)$, $S_{A+1-x}(\varepsilon, E_n)$ and $d\sigma_{n x n}^k(\varepsilon, E_n)/d\varepsilon$ are normalized to unity, $\beta_x(E_n) = \sigma_{n, xnf}(E_n)/\sigma_{n,F}(E_n)$ is the contribution of x-th fission chance $\sigma_{n, xnf}(E_n)$ to $\sigma_{n,F}$, $v_p(E_n)$ is the average number of prompt fission neutrons, $v_{px}(E_{nx})$ – average number of prompt fission neutrons, emitted by ^{234-x}U nuclides. PFNS, of neutrons, emitted from the fragments, $\widetilde{S}_{A+1-x}(\varepsilon, E_n)$, as proposed in [16], were approximated by the sum of two Watt [17] distributions with different temperatures, the temperature of light fragment being higher.

The differential measured PFNS at $E_n \gtrsim E_{nnf}$ are also susceptible to systematic errors of various origin. In ratios of PFNS, especially of draft PFNS data, before corrections for the backgrounds, etc., these errors may be partially canceled [18, 19]. Figure 3 shows the ²³⁹Pu(*n,F*)^{235}U(*n,F*) and ²³³U(*n,F*) 7^{235} U(*n,F*) ratios of PFNS for $E_n \sim 7 \div 8$ MeV. The averaged ²³³U(*n,F*)^{235}U(*n,F*) ratio is very much different from that of ²³⁹Pu(*n,F*)^{235}U(*n,F*). The ²³⁹Pu(*n,F*)^{235}U(*n,F*) ratios of differential PFNS at $E_n \sim 7$, 7.5 and 8 MeV mildly, bur significantly, fluctuate around averaged value. The respective ²³³U(*n,F*)^{235}U(*n,F*) ratios of PFNS also deviate from those of ²³⁹Pu(*n,F*)/²³⁵U(*n,F*). That is due to differing shapes of exclusive pre-fission (*n,nf*) spectra and $\beta_x(E_n)$ values. In the energy range of $E_n \sim 6 \div 7$ [19] the fluctuations of PFNS at $E_n \sim 6$, 6.5 and 7 MeV are more pronounced for both 239 Pu(*n,F*) 235 U(*n,F*) and 233 U 235 U(*n,F*) ratios, since competition of (*n,nf*), (*n,2n*) and (*n,ny*) depends on excitation energy. The observed PFNS of ²³³U(*n,F*) and ²³⁵U(*n,F*) are similar, as the increase of contribution of ²³³U(*n,nf*) is accompanied by decrease of ²³³U(*n,f*) reaction contribution $S_{A+1}(\varepsilon, E_n)$.

Fig.3. Ratios of PFNS ²³³U(*n,F*)/²³⁵U(*n,F*) and ²³⁹Pu(*n,F*)/²³⁵U(*n,F*) at $E_n \sim 6 \div 7$ MeV.

Fig.4. Ratios of PFNS ²³³U(*n,F*)^{235}U(*n,F*) and ²³⁹Pu(*n,F*)^{235}U(*n,F*) at $E_n \sim 14 \div 15$ MeV.

At $E_n \gtrsim E_{n2nf}$ integral emission spectrum of $(n,nX)^1$ reaction, $d^2\sigma_{nnx}^1(\varepsilon, E_n)/d\varepsilon$, could be represented as a sum of compound and weakly dependent on neutron emission angle preequilibrium components, and phenomenological function, modelling energy and angle dependence of neutron spectra, relevant for the 233U excitations of 1~6 MeV. Angle-averaged $\omega(\theta)$ _e function, $\omega(\theta)$ [20], is approximated as $\langle \omega(\theta) \rangle_{\theta} \approx \omega(90^{\circ})$, as described in [21]. Figure 4 compares calculated [20] and measured ratios of PFNS ²³⁹Pu(*n,F*)/²³⁵U(*n,F*) [20] and ²³³U(*n,F*)^{235}U(*n,F*) ratios at $E_n \sim 13 \div 14$ MeV. The latter calculated present ratio is much discrepant with that of JENDL-4.0 [13], which just follows the shape of ²³⁹Pu(*n,F*)²³⁵U(*n,F*) of [13].

TKE values of E_F^{pre} are superposition of TKE for ^{234-x}U nuclides contributing to the observed fission cross section:

$$
E_F^{pre}(E_n) = \sum_{x=0} E_{fx}^{pre}(E_{nx}) \beta_x(E_n) \tag{2}
$$

The excitation energy E_{nx} of $A, \ldots A+1-x$ nuclides, formed after emission of $(n, xnf)^{1...x}$ prefission neutrons, depends on their average energies $\langle E_{nmt}^k \rangle$:

$$
E_{nx} = E_r - E_{fx}^{pre} + E_n + B_n - \sum_{x=0,1 \le k \le x} \left(\left\langle E_{n x n f}^k \right\rangle + B_{n x} \right). \tag{3}
$$

Kinetic energy E_F^{post} of fission products, which emerge after emission of pre-fission neutrons, but before $β$ ⁻-decay, is defined as

$$
E_F^{post} \approx E_F^{pre} \left(1 - \nu_{post} / \left(A + 1 - \nu_{pre} \right) \right). \tag{4}
$$

Weak variations of TKE values [15, 22], of both E_F^{pre} and E_F^{post} , in the vicinity of ²³³U(*n,xnf*) reaction thresholds are due to the decrease of excitation energy of $(A+1-x)$ fissionning nuclides after emission of *x* pre-fission neutron [23]. Contribution of $\sigma_{n,nf}$ to the $\sigma_{n,F}$ of ²³³U(*n,F*), is larger than that of ²³⁵U(*n,nf*) to the $\sigma_{n,F}$ of ²³⁵U(*n,F*) [20, 24], nonetheless the local bumps in TKE around ²³³U(*n*, 2*nf*) and ²³³U(*n*, *nf*) reaction thresholds are weaker. That might be due to rather flat dependence on excitation energy of TKE for 232,233,234 U, opposite to the case of TKE for $235,236,237,238,239$ U fissionning nuclides. To reproduce the observed dependence of E_F^{pre} on E_n in ²³³U(*n*,*F*) reaction one may assume linear dependence of first-chance fission TKE $-E_{f0}^{pre}(E_n)$ (Fig. 5).

Average energy of prompt fission neutron spectra is its rather rough signature. Figure 6 evidence that the shapes of $\langle E \rangle (E_n)$ in cases of ²³³U(*n,F*) and ²³⁵U(*n,F*) [20] are similar. Values of $\langle E \rangle$ are presented here in the interval ε ~0.01–10 MeV. Our estimate of $\langle E \rangle (E_n)$ for ²³⁵U(*n,F*) [20] reproduces the estimate of $\langle E \rangle$ based on measured PFNS data [9, 26], especially around thresholds of ²³⁵U(*n,nf*) and ²³⁵U(*n,2nf*) reactions.

Fig. 5. Total kinetic energy TKE of ²³³U(*n,F*).

Fig.6. Average energy $\langle E \rangle$ of ²³³U(*n,F*) and ²³⁵U(*n,F*) PFNS.

CONCLUSION

A number of observed peculiarities in PFNS, TKE, $v_p(E_n)$ correlate with the emission of pre-fission (n, xnf) neutrons, as predicted for the ²³³U(*n*,*F*) and ²³³U(*n*,*xnf*) and earlier for 235 U(*n*,*F*) and ²³⁵U(*n*,*F*) and ²³⁵U(*n*,*F*) and ²³⁵U(*n*,*F*) and ²³⁵U(*n*,*F*) and ²³⁵U(*n*, ²³⁹Pu(*n,F*) reactions are compatible with measured data [11–13, 18, 19]. The correlation of PFNS shape and emissive ((*n,xnf*)) fission contribution to the observed fission cross section for ²³³U(*n,F*) and ²³⁵U(*n,F*) reactions is established. The net effect of these peculiarities is the occurrence of dips in $\langle E \rangle$ in the vicinity of (n, nf) and $(n, 2nf)$ reaction thresholds and bumps in both E_F^{pre} and E_F^{post} . Amplitude of dips in $\langle E \rangle$ of ²³³U(*n,F*) PFNS is quite similar to that observed in PFNS of $^{235}U(n, F)$ reaction, notwithstanding the appreciable differences of ²³³U(*n,xnf*) and ²³⁵U(*n,xnf*) reaction contributions to the observed fission cross sections ²³³U(*n,F*) and ²³⁵U(*n,F*), respectively. That is explained by relatively large contributions of $v_{px}(E_{nx})$ as compared with $v_{pre}(E_n)$ for the reaction ²³³U(*n,F*). PFNS of ²³³U(*n,F*) are more hard than those of $^{235}U(n, F)$ PFNS, but softer than those of $^{239}Pu(n, F)$. Difference of average energies of PFNS $\langle E \rangle$ of ²³³U(*n,F*) and ²³⁵U(*n,F*) amounts to 1~3 %. At incident energies higher than (*n,2nf*) reaction threshold the observed PFNS may seem similar, though the partial contributions of $^{233}U(n,xnf)$ and $^{235}U(n,xnf)$ to the observed PFNS are quite different. It might be argued that correct estimate of the exclusive pre-fission (*n,xnf*) neutron spectra and modelling of spectra of neutrons emitted from excited fission fragments gives a robust prediction of PFNS for ²³³U(*n,F*) for incident neutron energies $E_n \sim E_{th}$ –20 MeV with a precision and reliability comparable to those attained for $^{235}U(n,F)$ PFNS.

REFERENCES

- 1. *Zamyatnin Yu.S., Saphina I.N., Gutnikova E.K., Ivanova N.I.* Atom. Energ. 4, 337 (1958).
- 2. *Maslov V. M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V., Tetereva N.A.* INDC (BLR) -18, IAEA, Vienna (2003), <https://www-nds.iaea.org/publications/indc/indc-blr-0018/>
- 3. *Maslov V. M., Baba M., Hasegawa A., Kagalenko A. B., Kornilov N.V., Tetereva N.A.,* Actinide neutron data,<https://www-nds.iaea.org/minskact>
- 4. *Starostov B.I., Nefedov V.N., Boytsov A.A.* Vopr. At. Nauki Techn., Ser. Nucl. Const. 4, 16 (1985).
- 5. *Miura T, Baba M., Than Win, Ibaraki M., Hirasawa Y., Hiroishi T. and Aoki T.* Journal of Nuclear Science and Technology. 39, 409 (2002).
- 6. *Vorobyev A.S., Shcherbakov O.A.* Vopr. At. Nauki Techn., Ser. Nucl. Const., 2, 52 (2016).
- 7. *Vorobyev A.S., Shcherbakov O.A.* Vopr. At. Nauki Techn., Ser. Nucl. Const., 1−2, 37 (2011).
- 8. *Maslov V.M., Pronyaev V.G., Tetereva N.A. et al* In:Proc. Intern. Conf. Nuclear Cross Sections and Technology, Jeju, Korea, 2010, Journal of Korean Phys. Soc. 59, 1337 (2011).
- 9. *Kelly K. J., Gomez J.A., Devlin M. et al.* Phys. Rev. C, 105, 044615 (2022).
- 10. *Kelly K. J., Devlin M., O'Donnel J.M. et al.* Phys. Rev. C, 102, 034615 (2020).
- 11. *Marini P., Taieb J., Laurent B. et al.* Phys. Rev. C 101, 044614 (2020).
- 12. *Chadwick M., Herman M., Oblozinsky P.et al. Nuclear Data Sheets*. 112, 2887 (2011).
- 13. *Shibata K., Iwamoto O., Nakagawa T. et al.* J. Nucl. Sci. Technol. 48, 1(2011).
- 14. *Maslov V.M.*, In: LXXII International conference "Nucleus-2023", Fundamental Problems and applications, Moscow, July, 11–16, 2022, Book of Abstracts, p.111, [https://events.sinp.msu.ru/event/8/attachments/ 181/875 nucleus-2022-book-of](https://events.sinp.msu.ru/event/8/attachments/%20181/875%20nucleus-2022-book-of-abstracts-www.pdf)[abstracts-www.pdf.](https://events.sinp.msu.ru/event/8/attachments/%20181/875%20nucleus-2022-book-of-abstracts-www.pdf)
- 15. *Higgins D., Greife U., Tovesson F., Manning B., Mayorov D., Mosby S., Schmitt K.* Phys. Rev. C. 101, 014601 (2020).
- 16. *Kornilov N.V., Kagalenko A.B., Hambsch F.-J.* Yadernaya Fyzyka, 62, 209 (1999).
- 17. *Watt B.E*. Phys. Rev., 87, 1037 (1952).
- 18. *Kelly K. J., Devlin M. J., O'Donnell M. et al.* Phys. Rev. C 108, 024603 (2023).
- 19. *Devlin M., Bennett E. A., Buckner M. Q., et al.* In: Proceedings of the *International Conference Nuclear Data for Science and Technology, 24–29 July 2022, Sacramento, USA*; Eur. Phys. Journ. Web of Conf., 284, 04007 (2023).
- 20. *Maslov V.M.*, Physics of Atomic Nuclei, 86, 627 (2023).
- 21. *Maslov V.M.*, Physics of Particles and Nuclei Letters 20 (4), 565 (2023).
- 22. *Sergachev A.I., Dyachenko P.P., Kovalev A.M., Kuzminov B.D.,*Yad. Fiz, 16, 475 (1972).
- 23. *Maslov V.M.*, In: Proceedings of 29th International Seminar on Interaction of Neutrons with Nuclei: May 29 - June 2, 2023, JINR, Dubna, Russia, 2023, JINR, E3-2023-58, Dubna, 2023, p. 290–305.
- 24. *Maslov V.M., Kornilov N.V., Kagalenko A.B., Tetereva N.A* Nucl. Phys. A, 760, 274 (2005).
- 25. *Ethvignot T., Devlin M., Duarte H. et al.* Phys. Rev. Lett. 94, 052701 (2005).